The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Toru MATSUURA(2hit)

1-2hit
  • Beating Analysis of Shubnikov de Haas Oscillation in In0.53Ga0.47As Double Quantum Well toward Spin Filter Applications Open Access

    Takaaki KOGA  Toru MATSUURA  Sébastien FANIEL  Satofumi SOUMA  Shunsuke MINESHIGE  Yoshiaki SEKINE  Hiroki SUGIYAMA  

     
    INVITED PAPER

      Vol:
    E95-C No:5
      Page(s):
    770-776

    We recently determined the values of intrinsic spin-orbit (SO) parameters for In0.52Al0.48As/In0.53Ga0.47As(10 nm)/In0.52Al0.48As (InGaAs/InAlAs) quantum wells (QW), lattice-matched to (001) InP, from the weak localization/antilocalization analysis of the low-temperature magneto-conductivity measurements [1]. We have then studied the subband energy spectra for the InGaAs/InAlAs double QW system from beatings in the Shubnikov de Haas (SdH) oscillations. The basic properties obtained here for the double QW system provides useful information for realizing nonmagnetic spin-filter devices based on the spin-orbit interaction [2].

  • A Simple Method for the Measurement of the Phase and Power of 3rd-Order Inter-Modulation Components of the Output of Multi-Stage Power Amplifiers

    Toshifumi NAKATANI  Toru MATSUURA  Koichi OGAWA  

     
    PAPER-Active Devices and Circuits

      Vol:
    E87-C No:5
      Page(s):
    749-761

    A simple method has been proposed for the measurement of the output power and phase characteristics of the 3rd-order inter-modulation distortion (IM3) components appearing in multistage power amplifiers. By adopting a unique definition of the phase for the IM3 components that is independent of the delay time caused by transmission lines and other instrument devices, it is possible to measure the phase, merely by using a vector signal analyzer. It is demonstrated that an accurate estimation of the IM3 characteristics of two-stage cascaded power amplifiers for cellular radio handheld terminals can be made by using the IM3 characteristics of the 1st and 2nd-stage amplifiers as measured by the proposed method. The results indicate that it is possible to reduce the dissipation power by 18% at 28 dBm RF output power with respect to conventional measurement methods. Further studies show that the error in the resultant vector of the estimated IM3 is less than 1 dB, when the asymmetry characteristics of the IM3 sidebands in the 2nd-stage amplifier are less than 7.3%.