The search functionality is under construction.

Author Search Result

[Author] Toshimasa YAMAZAKI(2hit)

1-2hit
  • Performance of a Bayesian-Network-Model-Based BCI Using Single-Trial EEGs

    Maiko SAKAMOTO  Hiromi YAMAGUCHI  Toshimasa YAMAZAKI  Ken-ichi KAMIJO  Takahiro YAMANOI  

     
    PAPER-Biocybernetics, Neurocomputing

      Pubricized:
    2015/08/06
      Vol:
    E98-D No:11
      Page(s):
    1976-1981

    We have proposed a new Bayesian network model (BNM) framework for single-trial-EEG-based Brain-Computer Interface (BCI). The BNM was constructed in the following. In order to discriminate between left and right hands to be imaged from single-trial EEGs measured during the movement imagery tasks, the BNM has the following three steps: (1) independent component analysis (ICA) for each of the single-trial EEGs; (2) equivalent current dipole source localization (ECDL) for projections of each IC on the scalp surface; (3) BNM construction using the ECDL results. The BNMs were composed of nodes and edges which correspond to the brain sites where ECDs are located, and their connections, respectively. The connections were quantified as node activities by conditional probabilities calculated by probabilistic inference in each trial. The BNM-based BCI is compared with the common spatial pattern (CSP) method. For ten healthy subjects, there was no significant difference between the two methods. Our BNM might reflect each subject's strategy for task execution.

  • Functional Connectivity and Small-World Networks in Prion Disease

    Chisho TAKEOKA  Toshimasa YAMAZAKI  Yoshiyuki KUROIWA  Kimihiro FUJINO  Toshiaki HIRAI  Hidehiro MIZUSAWA  

     
    LETTER-Biological Engineering

      Pubricized:
    2022/11/28
      Vol:
    E106-D No:3
      Page(s):
    427-430

    We characterized prion disease by comparing brain functional connectivity network (BFCN), which were constructed by 16-ch scalp-recorded electroencephalograms (EEGs). The connectivity between each pair of nodes (electrodes) were computed by synchronization likelihood (SL). The BFCN was applied to graph theory to discriminate prion disease patients from healthy elderlies and dementia groups.