1-2hit |
Yoshiaki NEMOTO Naokazu HAMAMOTO Ryutaro SUZUKI Tetsushi IKEGAMI Yukio HASHIMOTO Toshiyuki IDE Kohei OHTA Glenn MANSFIELD Nei KATO
The progress of multimedia applications for education, research, social welfare and commerce is generating a lot of interest in the potential of a combination of satellite networking and Internet technology. The combination is particularly attractive as a low cost solution in regions which are large and sparsely populated. In 1991, aiming at networking the Pan-Pacific region, the PARTNERS (Pan-Pacific Regional Telecommunications Network Experiment and Research by Satellite) project was initiated. In this project, the major target was to construct a satellite-based network infrastructure to support education, research and so on in the Pan-Pacific region. As a part of PARTNERS the MEISEI-NET (Multimedia EducatIon System using satellite ETS-V and InterNET) project was started to evaluate the utility of satellite networking for education and reserch and, to investigate the feasibility of expanding the reach of the Internet using the PARTNERS infrastructure. MEISEI-NET focussed on (1) low start-up cost, (2) open access to the rich information resources on the Internet, (3) use of network to support education and research, and , (4) development and distribution of software for MEISEI-NET users. The construction of MEISEI-NET will be detailed followed by a report on its usage and the effects of this network. To support and manage MESEI-NET operations, we developed and deployed SNMP-based intelligent network management system. It offered fault detection and notification. This made the MEISEI-NET robust and practical despite of the satellite's (ETS-V) drift-problem. Students and researchers of universities from different countries participated in and benefited from MEISEI-NET until March 1996.
Yoichi KAWAKAMI Shigetoshi YOSHIMOTO Yasushi MATSUMOTO Takashi OHIRA Toshiyuki IDE
To realize S-band mobile satellite communications and broadcasting systems, the onboard mission system and equipment were designed for the Japanese Engineering Test Satellite VIII. The system performs voice communications using handheld terminals, high-speed data communications, and multimedia broadcasting through a geostationary satellite. To enhance system efficiency and flexibility, the onboard mission system features phased-array-fed reflector antennas with large antenna diameter and baseband switching through onboard processors. Configurations and performance of the subsystems and key onboard equipment, large deployable reflectors, feed arrays, beam forming networks and onboard processors, are presented. The S-band mobile systems and onboard equipment will be verified through in-orbit experiments scheduled for 2002.