The search functionality is under construction.

Author Search Result

[Author] Toshiyuki WATANABE(4hit)

1-4hit
  • Loss Evaluation and Efficiency Enhancement of an LLC Converter

    Toshiyuki WATANABE  Fujio KUROKAWA  

     
    PAPER-Energy in Electronics Communications

      Pubricized:
    2020/03/11
      Vol:
    E103-B No:9
      Page(s):
    922-928

    This paper presents a comparative loss analysis performed between an LLC converter and a phase-shift converter under the same size conditions using a power supply manufactured for information communications equipment. It is also shown herein that the LLC converter has a much higher ratio of transformer loss to total loss than the phase-shift converter and that the cause is the difference in the number of transformer turns between the two converters. Further, the ON-resistance of the secondary-side rectifier element and the number of transformer primary turns are shown to determine which of the two converters is superior in terms of low loss.

  • Loss Analysis from Capacitance between Windings in Multilayer Transformer and Loss Improvement by Winding Layer Layout Considering Working Voltage

    Toshiyuki WATANABE  Tetsuya OSHIKATA  Kimihiro NISHIJIMA  Fujio KUROKAWA  

     
    PAPER-Energy in Electronics Communications

      Pubricized:
    2019/11/12
      Vol:
    E103-B No:5
      Page(s):
    517-523

    An LLC converter has high efficiency and low noise and has thus recently attracted attention in the field of power supplies for use in information and communication systems. A planar transformer is thought to be particularly effective in a high-frequency switching power supply because an ideal primary-secondary interleave structure can be formed by the multilayer structure, and the alternating-current (AC) resistance can be reduced. Based on these facts, we investigated the use of planar transformers in LLC converters. However, high-frequency oscillation, which is not observed in a normal winding transformer, appears in the secondary side current, and the power supply loss is also higher. Our investigation found that the current oscillation and an increase in loss were caused by a primary-secondary capacitance of the transformer. This paper presents countermeasures used to reduce the capacitance between the primary and secondary windings, and a new layer structure for the transformer that reduces the capacitance. The loss is calculated through a simulation and experimentally, and good agreement is obtained. The proposed transformer offers the high efficiency of 98.1% in a 200 W, 12 V output power supply.

  • Ionization-Assisted Deposition of Azo-Containing Polyurea for NLO Applications

    Hiroaki USUI  Fumiko KIKUCHI  Kuniaki TANAKA  Toshiyuki WATANABE  Seizo MIYATA  

     
    PAPER-Optoelectronics and Photonics

      Vol:
    E85-C No:6
      Page(s):
    1270-1274

    Polyurea thin films containing azo-based nonlinear optical (NLO) chromophore were prepared by co-deposition of 4,4'-diphenylmethane diisocyanate and 2,4-diamino-4'-nitroazobenzene monomers using the ionization-assisted method. The co-deposited film reacted to form polyurea after annealing in the air. The dichroic optical absorption spectra indicated the preferential orientation of dipole moments in the as-deposited film. The substrate bias voltage influenced the optical anisotropy. Maker fringe measurement showed that the films have NLO activity without the poling process.

  • Transient Characteristics of Mobile Communication Traffic in a Band-Shaped Service Area

    Tatsuya KABASAWA  Toshiyuki WATANABE  Masakazu SENGOKU  Yoshio YAMAGUCHI  Shoji SHINODA  Takeo ABE  

     
    PAPER-Mobile Communication

      Vol:
    E76-A No:6
      Page(s):
    961-966

    In a cellular system for mobile communications, every service area is divided into a number of cells for utilizing the frequency spectrum efficiently. Service areas for such systems are two dimensional, however, the analysis of the characteristics of the communication traffic for the areas are quite complicated, since the motion of the vehicles in the area can not be predicted precisely. For making the analysis easily, the areas are assumed to be band-shaped like a highway. Furthermore, in the analysis, the traffic offered to a cell is assumed to be stationary. In actual systems, the density of vehicles and the offered communication traffic is not stationary, so that many differences exist between the analysis and the actual systems. This paper presents an analysis method using state equations. The equations represent the transient characteristics of mobile communication traffic when a band-shaped service area is assumed. The transition is made by accidents or congestion, and causes the rapid offered traffic change in a communication system. In the method, numerical analysis is made under the consideration of "handoff" operation. The operation consists of surrendering the channel used in the previous cell and reassigning a new channel when the vehicle crosses the cell boundary. The analytical results are compared with the simulations, and the two results show good agreement. The method presented in this paper can be used for designing the switching system when the offered traffic changes rapidly due to accidents or congestion.