1-2hit |
Toyoki UE Seiichi SAMPEI Norihiko MORINAGA
This paper proposes a symbol rate controlled adaptive modulation/TDMA/TDD for future wireless personal communication systems. The proposed system controls the symbol rate according to the channel conditions to achieve wide dynamic range of the modulation parameter control as well as to improve the delay spread immunity. The main purpose of the proposed system is to increase the data throughput with keeping a certain transmission quality, especially in frequency selective fading environments. For this purpose, the proposed system predicts the C/N0 (carrier power-to-noise spectral density ratio) and the delay spread separately, and selects the optimum symbol rate that gives the maximum bit rate within a given bandwidth satisfying the required BER. The simulated results show that the proposed system can achieve higher transmission quality in comparison with the fixed symbol rate transmission system in both flat Rayleigh and frequency selective fading environments. The results also show that the proposed system is very effective to achieve higher bit rate transmission in frequency selective fading environments.
Kazuyuki MIYA Osamu KATO Koichi HOMMA Takashi KITADE Masaki HAYASHI Toyoki UE
We previously proposed a next generation cellular system for IMT-2000 based on wideband DS-CDMA with TDD scheme and have evaluated its performance by computer simulation, laboratory and field experiments. This paper presents the design concept of TDD-mode operation on wideband DS-CDMA systems. These systems employ almost the same techniques with a little difference as FDD-mode. We also present the schemes of the TDD-mode specific techniques such as fast cell search, transmission diversity and transmitter power control and show the evaluation results of them are effective. Performance can be improved by use of enhanced techniques such as interference cancellation and adaptive antenna array diversity.