The search functionality is under construction.

Author Search Result

[Author] Vinh TRAN-QUANG(2hit)

1-2hit
  • Low-Complexity and Energy-Efficient Algorithms on Image Compression for Wireless Sensor Networks

    Phat NGUYEN HUU  Vinh TRAN-QUANG  Takumi MIYOSHI  

     
    PAPER

      Vol:
    E93-B No:12
      Page(s):
    3438-3447

    This paper proposes two algorithms to balance energy consumption among sensor nodes by distributing the workload of image compression tasks within a cluster on wireless sensor networks. The main point of the proposed algorithms is to adopt the energy threshold, which is used when we implement the exchange and/or assignment of tasks among sensor nodes. The threshold is well adaptive to the residual energy of sensor nodes, input image, compressed output, and network parameters. We apply the lapped transform technique, an extended version of the discrete cosine transform, and run length encoding before Lempel-Ziv-Welch coding to the proposed algorithms to improve both quality and compression rate in image compression scheme. We extensively conduct computational experiments to verify the our methods and find that the proposed algorithms achieve not only balancing the total energy consumption among sensor nodes and, thus, increasing the overall network lifetime, but also reducing block noise in image compression.

  • A Transmission Range Optimization Algorithm to Avoid Energy Holes in Wireless Sensor Networks

    Vinh TRAN-QUANG  Phat NGUYEN HUU  Takumi MIYOSHI  

     
    PAPER-Network

      Vol:
    E94-B No:11
      Page(s):
    3026-3036

    The many-to-one communication nature of wireless sensor networks (WSNs) leads to an unbalanced traffic distribution, and, accordingly, sensor nodes closer to the base station have to transmit more packets than those at the periphery of the network. This problem causes the nodes closer to the base station to deplete their energy prematurely, forming a hole surrounding the base station. This phenomenon is called the energy hole problem, and it severely reduces the network lifetime. In this paper, we present a cooperative power-aware routing algorithm for uniformly deployed WSNs. The proposed algorithm is based on the idea of replacing the constant transmission range of relaying sensor nodes with an adjusted transmission range, in such a way that each individual node consumes its energy smoothly. We formulate the dynamic transmission range adjustment optimization (DTA) problem as a 0-1 Multiple Choice Knapsack Problem (0-1 MCKP) and present a dynamic programming method to solve the optimization problem. Simulations confirm that the proposed method helps to balance the energy consumption of sensor nodes, avoiding the energy hole problem and extending the network lifetime.