The search functionality is under construction.

Author Search Result

[Author] Vu-Van HIEP(2hit)

1-2hit
  • Optimizing Sensing Scheduling for Cooperative Spectrum Sensing in Cognitive Radio Networks

    Tran-Nhut-Khai HOAN  Vu-Van HIEP  Insoo KOO  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2016/12/01
      Vol:
    E100-B No:5
      Page(s):
    884-892

    In this paper, we consider optimal sensing scheduling for sequential cooperative spectrum sensing (SCSS) technique in cognitive radio networks (CRNs). Activities of primary users (PU) on a primary channel are captured by using a two states discrete time Markov chain process and a soft combination is considered at the FC. Based on the theory of optimal stopping, we propose an algorithm to optimize the cooperative sensing process in which the FC sequentially asks each CU to report its sensing result until the stopping condition that provides the maximum expected throughput for the CRN is satisfied. Simulation result shows that the performance of the proposed scheme can be improved by further shortening the reporting overhead and reducing the probability of false alarm in comparison to other schemes in literature. In addition, the collision ratio on the primary channel is also investigated.

  • Efficient Selection of Users' Pair in Cognitive Radio Network to Maximize Throughput Using Simultaneous Transmit-Sense Approach

    Muhammad Sajjad KHAN  Muhammad USMAN  Vu-Van HIEP  Insoo KOO  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2016/09/01
      Vol:
    E100-B No:2
      Page(s):
    380-389

    Protection of the licensed user (LU) and utilization of the spectrum are the most important goals in cognitive radio networks. To achieve the first goal, a cognitive user (CU) is required to sense for a longer time period, but this adversely affects the second goal, i.e., throughput or utilization of the network, because of the reduced time left for transmission in a time slot. This tradeoff can be controlled by simultaneous sensing and data transmission for the whole frame duration. However, increasing the sensing time to the frame duration consumes more energy. We propose a new frame structure in this paper, in which transmission is done for the whole frame duration whereas sensing is performed only until the required detection probability is satisfied. This means the CU is not required to perform sensing for the whole frame duration, and thus, conserves some energy by sensing for a smaller duration. With the proposed frame structure, throughput of all the CUs is estimated for the frame and, based on the estimated throughput and consumed energy in sensing and transmission, the energy efficient pair of CUs (transmitter and receiver) that maximizes system throughput by consuming less energy, is selected for a time slot. The selected CUs transmits data for the whole time slot, whereas sensing is performed only for certain duration. The performance improvement of the proposed scheme is demonstrated through simulations by comparing it with existing schemes.