The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Wanzeng KONG(1hit)

1-1hit
  • RAMST-CNN: A Residual and Multiscale Spatio-Temporal Convolution Neural Network for Personal Identification with EEG

    Yuxuan ZHU  Yong PENG  Yang SONG  Kenji OZAWA  Wanzeng KONG  

     
    PAPER-Biometrics

      Pubricized:
    2020/08/06
      Vol:
    E104-A No:2
      Page(s):
    563-571

    In this study we propose a method to perform personal identification (PI) based on Electroencephalogram (EEG) signals, where the used network is named residual and multiscale spatio-temporal convolution neural network (RAMST-CNN). Combined with some popular techniques in deep learning, including residual learning (RL), multi-scale grouping convolution (MGC), global average pooling (GAP) and batch normalization (BN), RAMST-CNN has powerful spatio-temporal feature extraction ability as it achieves task-independence that avoids the complexity of selecting and extracting features manually. Experiments were carried out on multiple datasets, the results of which were compared with methods from other studies. The results show that the proposed method has a higher recognition accuracy even though the network it is based on is lightweight.