The search functionality is under construction.

Author Search Result

[Author] Wei JHANG(4hit)

1-4hit
  • Efficient Hybrid DOA Estimation for Massive Uniform Linear Array

    Wei JHANG  Shiaw-Wu CHEN  Ann-Chen CHANG  

     
    LETTER-Digital Signal Processing

      Vol:
    E102-A No:5
      Page(s):
    721-724

    This letter presents an efficient hybrid direction of arrival (DOA) estimation scheme for massive uniform linear array. In this scheme, the DOA estimator based on a discrete Fourier transform (DFT) is first applied to acquire coarse initial DOA estimates for single data snapshot. And then, the fine DOA is accurately estimated through using the iterative search estimator within a very small region. It iteratively searches for correct DOA vector by minimizing the objective function using a Taylor series approximation of the DOA vector with the one initially estimated. Since the proposed scheme does not need to perform eigen-decomposition and spectrum search while maintaining better DOA estimates, it also has low complexity and real-time capability. Simulation results are presented to demonstrate the efficiency of the proposed scheme.

  • Computationally Efficient DOA Estimation for Massive Uniform Linear Array

    Wei JHANG  Shiaw-Wu CHEN  Ann-Chen CHANG  

     
    LETTER-Digital Signal Processing

      Vol:
    E103-A No:1
      Page(s):
    361-365

    This letter presents an improved hybrid direction of arrival (DOA) estimation scheme with computational efficiency for massive uniform linear array. In order to enhance the resolution of DOA estimation, the initial estimator based on the discrete Fourier transform is applied to obtain coarse DOA estimates by a virtual array extension for one snapshot. Then, by means of a first-order Taylor series approximation to the direction vector with the one initially estimated in a very small region, the iterative fine estimator can find a new direction vector which raises the searching efficiency. Simulation results are provided to demonstrate the effectiveness of the proposed scheme.

  • Efficient Hybrid DOA Estimation for Massive Uniform Rectangular Array

    Wei JHANG  Shiaw-Wu CHEN  Ann-Chen CHANG  

     
    LETTER-Digital Signal Processing

      Vol:
    E103-A No:6
      Page(s):
    836-840

    In this letter, an efficient hybrid direction-of-arrival (DOA) estimation scheme is devised for massive uniform rectangular array. In this scheme, the DOA estimator based on a two-dimensional (2D) discrete Fourier transform is first applied to acquire coarse initial DOA estimates for single data snapshot. Then, the fine DOA is accurately estimated through using the iterative search estimator within a very small region. Meanwhile, a Nyström-based method is utilized to correctly compute the required noise-subspace projection matrix, avoiding the direct computation of full-dimensional sample correlation matrix and its eigenvalue decomposition. Therefore, the proposed scheme not only can estimate DOA, but also save computational cost, especially in massive antenna arrays scenarios. Simulation results are included to demonstrate the effectiveness of the proposed hybrid estimate scheme.

  • Joint CFO and DOA Estimation Based on MVDR Criterion in Interleaved OFDMA/SDMA Uplink Open Access

    Chih-Chang SHEN  Wei JHANG  

     
    LETTER-Spread Spectrum Technologies and Applications

      Pubricized:
    2023/10/26
      Vol:
    E107-A No:7
      Page(s):
    1066-1070

    This letter deals with joint carrier frequency offset (CFO) and direction of arrival (DOA) estimation based on the minimum variance distortionless response (MVDR) criterion for interleaved orthogonal frequency division multiple access (OFDMA)/space division multiple access (SDMA) uplink systems. In order to reduce the computational load of two-dimensional searching based methods, the proposed method includes only once polynomial CFO rooting and does not require DOA paring, hence it raises the searching efficiency. Several simulation results are provided to illustrate the effectiveness of the proposed method.