1-4hit |
Shin-Jia HWANG Chin-Chen CHANG Wei-Pang YANG
For the dependent protocols to perform the server-aided RSA secret computation, the damage caused by the active attacks is greater than that by the passive attacks. Though there are two dependent proposed protocols against active attacks, the cost of the two protocols is still high. In this paper, we propose two efficient dependent protocols. Even considering the low cost of these two protocols, they can also guard against the proposed active attacks.
Min-Shiang HWANG Wen-Guey TZENG Wei-Pang YANG
Many methods, based on the concept of key-lock-pair have been proposed for access control in computer protection systems. However, the proposed methods still either lack of dynamic ability or need quite a lot of computation in performing requests of deleting users/files, inserting users/files, or updating access rights of users to files. In this paper we propose a two-key-lock-pair access control method that is based on the unique factorization theorem and a time stamp mechanism. Our method is dynamic and needs a minimum amount of computation in the sense that it only updates at most one key/lock for each access request, which has not been achieved before.
Shin-Mu TSENG Y. H. CHIN Wei-Pang YANG
We present a new scheduling policy named Value-based Processor Allocation (VPA-k) for scheduling value-based transactions in a multiprocessor real-time database system. The value of a transaction represents the profit the transaction contributes to the system if it is completed before its deadline. Using VPA-k policy, the transactions with higher values are given higher priorities to execute first, while at most k percentage of the total processors are allocated to the urgent transactions dynamically. Through simulation experiments, VPA-k policy is shown to outperform other scheduling policies substantially in both maximizing the totally obtained values and minimizing the number of missed transactions.
Shin-Jia HWANG Chin-Chen CHANG Wei-Pang YANG
To improve the efficiency for the threshold schemes, the major problem is that the secret shadows cannot be reused after renewing or recovering the shared secret. However, if the secret shadows cannot be reused, the established threshold scheme is limited to be used only once. It is inefficient to reconstruct the whole secret sharing system. Therefore, we introduce an efficient dynamic threshold scheme. In the new scheme, the shadowholders can reuse the secret shadows no matter that the shared secret is renewed or recovered. In addition, the new scheme provides a way by which the dealer can renew the shared secret or reconstruct the secret sharing system, efficiently. Therefore, this scheme is good for maintaining the important secrets.