The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Weiyu ZHOU(2hit)

1-2hit
  • A New SIDGS-Based Tunable BPF Design Method with Controllable Bandwidth

    Weiyu ZHOU  Koji WADA  

     
    PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2023/03/28
      Vol:
    E106-C No:10
      Page(s):
    614-622

    This paper provides a new method to implement substrate integrated defected ground structure (SIDGS)-based bandpass filter (BPF) with adjustable frequency and controllable bandwidth. Compared with previous literature, this method implements a new SIDGS-like resonator capable of tunable frequency in the same plane as the slotted line using a varactor diode, increasing the design flexibility. In addition, the method solves the problem that the tunable BPF constituted by the SIDGS resonator cannot control the bandwidth by introducing a T-shaped non-resonant unit. The theoretical design method and the structural design are shown. Moreover, the configured structure is fabricated and measured to show the validity of the design method in this paper.

  • A Multi-Layer SIW Resonator Loaded with Asymmetric E-Shaped Slot-Lines for a Miniaturized Tri-Band BPF with Low Radiation Loss

    Weiyu ZHOU  Satoshi ONO  Koji WADA  

     
    PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2021/12/27
      Vol:
    E105-C No:7
      Page(s):
    349-357

    This paper proposes a novel multi-layer substrate integrated waveguide (SIW) resonator loaded with asymmetric E-shaped slot-lines and shows a tri-band band-pass filter (BPF) using the proposed structure. In the previous literature, various SIW resonators have been proposed to simultaneously solve the problems of large area and high insertion loss. Although these SIWs have a lower insertion loss than planar-type resonators using a printed circuit board, the size of these structures tends to be larger. A multi-layer SIW resonator loaded with asymmetric E-shaped slot-lines can solve the above problems and realize a tri-band BPF without increasing the size to realize further miniaturization. The theoretical design method and the structural design are shown. Moreover, the configured structure is fabricated and measured for showing the validity of the design method in this paper.