1-1hit |
Liwei WANG Yanduo ZHANG Tao LU Wenhua FANG Yu WANG
Person re-identification (Re-ID) aims to match the same pedestrain identity images across different camera views. Because pedestrians will change clothes frequently for a relatively long time, while many current methods rely heavily on color appearance information or only focus on the person biometric features, these methods make the performance dropped apparently when it is applied to Clohting-Changing. To relieve this dilemma, we proposed a novel Multi Feature Fusion Attention Network (MFFAN), which learns the fine-grained local features. Then we introduced a Clothing Adaptive Attention (CAA) module, which can integrate multiple granularity features to guide model to learn pedestrain's biometric feature. Meanwhile, in order to fully verify the performance of our method on clothing-changing Re-ID problem, we designed a Clothing Generation Network (CGN), which can generate multiple pictures of the same identity wearing different clothes. Finally, experimental results show that our method exceeds the current best method by over 5% and 6% on the VCcloth and PRCC datasets respectively.