The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] William L. MARTENS(2hit)

1-2hit
  • The Synthesis of Low-Peak Orthogonal-Base-Set Sequences Using Trigonometric Function Aliasing

    Takafumi HAYASHI  William L. MARTENS  

     
    PAPER-Theory of Signals

      Vol:
    E83-A No:8
      Page(s):
    1513-1522

    This paper presents a new technique for the synthesis of orthogonal-base-set sequences suitable for applications requiring sets of uncorrelated pseudo-white-noise sources. The synthesized sequences (vectors) are orthogonal to each other, and each sequence also has a flat power spectrum and low peak factor. In order to construct the orthogonal-base-set sequences, the new application of ta-sequence (trigonometric function aliasing sequence) introduced in this paper uses Latin-squares and Walsh-Hadamard sequences. The ta-sequence itself is a very new concept, and the method presented here provides the means for generating various orthogonal-base-set sequences at sizes required for such applications as system measurement (needing uncorrelated test signals), pseudo noise synthesis for spread spectrum communication, and audio signal processing (needing synthesis of stereo or multichannel signals from mono sources).

  • The Synthesis of Low-Peak Cross-Correlation Sequences Using Trigonometric Function Aliasing

    Takafumi HAYASHI  William L. MARTENS  

     
    PAPER

      Vol:
    E82-A No:8
      Page(s):
    1402-1411

    This paper presents a new technique for the synthesis of sets of low-peak sequences exhibiting low peak cross correlation. The sequences also have flat power spectra and are suitable for many applications requiring such sets of uncorrelated pseudo-white-noise sources. This is a new application of the ta-sequence (trigonometric function aliasing sequence), which itself is a very new technique that uses the well-known "Reed-Solomon code" or "One coincident code" to generate these sets of low-peak-factor pseudo-white-noise exhibiting low peak cross correlation. The ta sequence method presented here provides the means for generating various sequences at the lengths required for such applications as system measurement (needing uncorrelated test signals), pseudo-noise synthesis (for spread spectrum communication), and audio signal processing for sound production (for enhancing spatial imagery in stereo signals synthesized from mono sources) and sound reproduction (for controlling unwanted interference effects in multiple-loudspeaker arrays).