The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Wladimir BOCQUET(2hit)

1-2hit
  • Marginalized Particle Filter for Blind Signal Detection with Analog Imperfections Open Access

    Yuki YOSHIDA  Kazunori HAYASHI  Hideaki SAKAI  Wladimir BOCQUET  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E93-B No:2
      Page(s):
    336-344

    Recently, the marginalized particle filter (MPF) has been applied to blind symbol detection problems over selective fading channels. The MPF can ease the computational burden of the standard particle filter (PF) while offering better estimates compared with the standard PF. In this paper, we investigate the application of the blind MPF detector to more realistic situations where the systems suffer from analog imperfections which are non-linear signal distortion due to the inaccurate analog circuits in wireless devices. By reformulating the system model using the widely linear representation and employing the auxiliary variable resampling (AVR) technique for estimation of the imperfections, the blind MPF detector is successfully modified to cope with the analog imperfections. The effectiveness of the proposed MPF detector is demonstrated via computer simulations.

  • A Novel Power Distribution Scheme Combined with Adaptive Modulation Based on Subcarrier Grouping for OFDM Systems

    Wladimir BOCQUET  Kazunori HAYASHI  Hideaki SAKAI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E91-B No:12
      Page(s):
    3974-3982

    In this paper, we propose to adapt both the modulation scheme and the transmit power in the frequency domain using a heuristic evaluation of the bit error rate (BER) for each subcarrier. The proposed method consists in ordering in terms of fading impact, grouping a certain number of subcarriers and performing local power adaptation in each subcarrier group. The subcarrier grouping is performed in order to equalize the average channel condition of each subcarrier group. Grouping and local power adaptation allow us to take advantage of the channel variations and to reduce the computational complexity of the proposed power distribution scheme, while avoiding the performance degradation due to the suboptimum power adaptation as much as possible. Compared to the conventional power distribution methods, the proposed scheme does not require any iterative process and the power adaptation is directly performed using an analytical formula. Simulations show a gain in terms of BER performance compared to equal power distribution and existing algorithms for power distribution. In addition, due to the subcarrier group specificity, the trade-off between the computational complexity and the performance can be controlled by adjusting the size of the subcarrier groups. Simulation results show significant improvement of BER performance compared to equal power allocation.