1-6hit |
Yoshio YAMAGUCHI Toru NISHIKAWA Masakazu SENGOKU Wolfgang-M. BOERNER Hyo Joon EOM
This paper applies the principle of radar polarimetry to the synthetic aperture frequency modulated continuous wave radar. First, the principle of monochromatic wave radar polarimetry using scattering matrix and polarization ratio necessary for introducing polarimetric imaging is given. In order to accommodate this principle to a wideband radar, a scattering matrix must be introduced, because FM-CW radar utilizes a wideband signal. This paper points out that the polarimetric target reflection coefficient obtained by the synthetic aperture FM-CW radar works as the scattering matrix element. This replacement, i.e., polarimetric reflection coefficient = the scattering matrix element, was verified by an experiment based on the polarization ratio which maximizes and minimizes a target. A radar system operative in the microwave X-band was successfully applied to the polarimetric detection of a metallic pipe of different orientations, demonstrating the validity of FM-CW radar polarimetry, and indicating an establishment of full polarimetric radar system.
Yoshio YAMAGUCHI Yuji TAKAYANAGI Wolfgang-M. BOERNER Hyo Joon EOM Masakazu SENGOKU
This paper applied the polarimetric filtering principle to Synthetic Aperture Radar (SAR) image sets in three possible polarimetric radar channels and compared the resultant imagery. The polarimetric radar channels in consideration here are Co-Pol, Cross (X)-pol, and Matched (M)-pol channels. Each channel has its own polarimetric characteristics for imaging. Using the formulation of the contrast enhancement factors based on the Stokes vector formalism, polarimetric enhanced images for three channels are shown using NASA JPL DC-8 AIRSAR data sets (CC0045L, Bonanza Creek, AK/USA). It is shown that the optimally enhanced Co- and X-Pol channel images play a decisive role in imaging in a complex featured background.
Toshifumi MORIYAMA Masafumi NAKAMURA Yoshio YAMAGUCHI Hiroyoshi YAMADA Wolfgang-M. BOERNER
This paper discusses the classification of targets buried in the underground by radar polarimetry. The subsurface radar is used for the detection of objects buried beneath the ground surface, such as gas pipes, cables and cavities, or in archeological exploration operation. In addition to target echo, the subsurface radar receives various other echoes, because the underground is inhomogeneous medium. Therefore, the subsurface radar needs to distinguish these echoes. In order to enhance the discrimination capability, we first applied the polarization anisotropy coefficient to distinguish echoes from isotropic targets (plate, sphere) versus anisotropic targets (wire, pipe). It is straightforward to find the man-made target buried in the underground using the polarization anisotropy coefficient. Second, we tried to classify targets using the polarimetric signature approach, in which the characteristic polarization state provides the orientation angle of an anisotropic target. All of these values contribute to the classification of a target. Field experiments using an ultra-wideband (250 MHz to 1 GHz) FM-CW polarimetric radar system were carried out to show the usefulness of radar polarimetry. In this paper, several detection and classification results are demonstrated. It is shown that these techniques improve the detection capability of buried target considerably.
Tah J. PARK Hyo J. EOM Wolfgang-M. BOERNER Yoshio YAMAGUCHI
The behavior of TM-wave scattering from a dielectric-loaded semicircular trough in a conducting half-space is investigated. The dielectric loading is made of a circular cylinder which lies in a semi-circular trough in the perfectly conducting plane. The formulation is numerically evaluated to investigate the scattered field pattern for various dielectric loading conditions. It is found that the scattering patterns exhibit the resonant behavior due to both of the concave surface contour and the dielectric loading.
Jian YANG Ying-Ning PENG Yoshio YAMAGUCHI Hiroyoshi YAMADA Wolfgang-M. BOERNER
The periodicity of a target scattering matrix is studied when the target is rotated about the sight line of a monostatic radar. Except for the periodicity and invariance of the scattering matrix diag(a,a), it is proved that only helixes have the quasi-invariance, and that only N-targets have the quasi-periodicity, demonstrating that a target with some angle rotation symmetry also has the scattering matrix form diag(a,a). From this result, we conclude that it is impossible to extract the shape characteristics of a complex target from its scattering matrix or its Kennaugh matrix.
Hyo J. EOM Wolfgang-M. BOERNER
The spherical electromagnetic wave backscattering from a random rough terrain is investigated. The incoherent backscattered power is computed to examine how the antenna beamwidth and wave sphericity influence the magnitude of copolarized terrain radar backscattering.