1-1hit |
Joanna Kazzandra DUMAGPI Woo-Young JUNG Yong-Jin JEONG
Threat object recognition in x-ray security images is one of the important practical applications of computer vision. However, research in this field has been limited by the lack of available dataset that would mirror the practical setting for such applications. In this paper, we present a novel GAN-based anomaly detection (GBAD) approach as a solution to the extreme class-imbalance problem in multi-label classification. This method helps in suppressing the surge in false positives induced by training a CNN on a non-practical dataset. We evaluate our method on a large-scale x-ray image database to closely emulate practical scenarios in port security inspection systems. Experiments demonstrate improvement against the existing algorithm.