The search functionality is under construction.

Author Search Result

[Author] Xia ZHANG(4hit)

1-4hit
  • Real-Time Streaming Data Delivery over Named Data Networking Open Access

    Peter GUSEV  Zhehao WANG  Jeff BURKE  Lixia ZHANG  Takahiro YONEDA  Ryota OHNISHI  Eiichi MURAMOTO  

     
    INVITED PAPER

      Vol:
    E99-B No:5
      Page(s):
    974-991

    Named Data Networking (NDN) is a proposed future Internet architecture that shifts the fundamental abstraction of the network from host-to-host communication to request-response for named, signed data-an information dissemination focused approach. This paper describes a general design for receiver-driven, real-time streaming data (RTSD) applications over the current NDN implementation that aims to take advantage of the architecture's unique affordances. It is based on experimental development and testing of running code for real-time video conferencing, a positional tracking system for interactive multimedia, and a distributed control system for live performance. The design includes initial approaches to minimizing latency, managing buffer size and Interest retransmission, and adapting retrieval to maximize bandwidth and control congestion. Initial implementations of these approaches are evaluated for functionality and performance results, and the potential for future research in this area, and improved performance as new features of the architecture become available, is discussed.

  • Fuzzy Biometric-Based Encryption for Encrypted Data in the Cloud

    Qing WU  Leyou ZHANG  Jingxia ZHANG  

     
    LETTER-Cryptography and Information Security

      Vol:
    E100-A No:5
      Page(s):
    1257-1261

    Fuzzy techniques can implement the fine-grained access control of encrypted data in the Cloud because they support error-tolerance. In this system, using biometric attributes such as fingerprints, faces and irises as pubic parameters is advantageous over those systems based on Public Key Infrastructure (PKI). This is because biometric information is unique, unforgettable and non-transferable. However the biometric-attribute measurements are noisy and most of the existing encryption systems can not support the biometric-attribute encryption. Additionally, the previous fuzzy encryption schemes only achieve the selective security which is a weak security model. To overcome these drawbacks, we propose a new fuzzy encryption scheme based on the lattice in this letter. The proposed scheme is based on a hierarchical identity-based encryption with fixed-dimensional private keys space and thus has short public parameters and short private keys, which results in high computation efficiency. Furthermore, it achieves the strong security, i.e., adaptive security. Lastly, the security is reduced to the learning with errors (LWE) problem in the standard model.

  • Faster SET Operation in Phase Change Memory with Initialization Open Access

    Yuchan WANG  Suzhen YUAN  Wenxia ZHANG  Yuhan WANG  

     
    PAPER-Electronic Materials

      Pubricized:
    2021/04/14
      Vol:
    E104-C No:11
      Page(s):
    651-655

    In conclusion, an initialization method has been introduced and studied to improve the SET speed in PCM. Before experiment verification, a two-dimensional finite analysis is used, and the results illustrate the proposed method is feasible to improve SET speed. Next, the R-I performances of the discrete PCM device and the resistance distributions of a 64 M bits PCM test chip with and without the initialization have been studied and analyzed, which confirms that the writing speed has been greatly improved. At the same time, the resistance distribution for the repeated initialization operations suggest that a large number of PCM cells have been successfully changed to be in an intermediate state, which is thought that only a shorter current pulse can make the cells SET successfully in this case. Compared the transmission electron microscope (TEM) images before and after initialization, it is found that there are some small grains appeared after initialization, which indicates that the nucleation process of GST has been carried out, and only needs to provide energy for grain growth later.

  • Improved Magnetic Equivalent Circuit with High Accuracy Flux Density Distribution of Core-Type Inductor

    Xiaodong WANG  Lyes DOUADJI  Xia ZHANG  Mingquan SHI  

     
    PAPER-Electronic Components

      Pubricized:
    2020/02/10
      Vol:
    E103-C No:8
      Page(s):
    362-371

    The accurate calculation of the inductance is the most basic problem of the inductor design. In this paper, the core flux density distribution and leakage flux in core window and winding of core-type inductor are analyzed by finite element analysis (FEA) firstly. Based on it, an improved magnetic equivalent circuit with high accuracy flux density distribution (iMEC) is proposed for a single-phase core-type inductor. Depend on the geometric structure, two leakage paths of the core window are modeled. Furthermore, the iMEC divides the magnetomotive force of the winding into the corresponding core branch. It makes the core flux density distribution consistent with the FEA distribution to improve the accuracy of the inductance. In the iMEC, flux density of the core leg has an error less than 5.6% compared to FEA simulation at 150A. The maximum relative error of the inductance is less than 8.5% and the average relative error is less than 6% compared to the physical prototype test data. At the same time, due to the high computational efficiency of iMEC, it is very suitable for the population-based optimization design.