The search functionality is under construction.

Author Search Result

[Author] Xiaoan TANG(4hit)

1-4hit
  • Extreme Learning Machine with Superpixel-Guided Composite Kernels for SAR Image Classification

    Dongdong GUAN  Xiaoan TANG  Li WANG  Junda ZHANG  

     
    LETTER-Pattern Recognition

      Pubricized:
    2018/03/14
      Vol:
    E101-D No:6
      Page(s):
    1703-1706

    Synthetic aperture radar (SAR) image classification is a popular yet challenging research topic in the field of SAR image interpretation. This paper presents a new classification method based on extreme learning machine (ELM) and the superpixel-guided composite kernels (SGCK). By introducing the generalized likelihood ratio (GLR) similarity, a modified simple linear iterative clustering (SLIC) algorithm is firstly developed to generate superpixel for SAR image. Instead of using a fixed-size region, the shape-adaptive superpixel is used to exploit the spatial information, which is effective to classify the pixels in the detailed and near-edge regions. Following the framework of composite kernels, the SGCK is constructed base on the spatial information and backscatter intensity information. Finally, the SGCK is incorporated an ELM classifier. Experimental results on both simulated SAR image and real SAR image demonstrate that the proposed framework is superior to some traditional classification methods.

  • Single-Image 3D Pose Estimation for Texture-Less Object via Symmetric Prior

    Xiaoyuan REN  Libing JIANG  Xiaoan TANG  Junda ZHANG  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2018/04/10
      Vol:
    E101-D No:7
      Page(s):
    1972-1975

    Extracting 3D information from a single image is an interesting but ill-posed problem. Especially for those artificial objects with less texture such as smooth metal devices, the decrease of object detail makes the problem more challenging. Aiming at the texture-less object with symmetric structure, this paper proposes a novel method for 3D pose estimation from a single image by introducing implicit structural symmetry and context constraint as priori-knowledge. Firstly, by parameterized representation, the texture-less object is decomposed into a series of sub-objects with regular geometric primitives. Accordingly, the problem of 3D pose estimation is converted to a parameter estimation problem, which is implemented by primitive fitting algorithm. Then, the context prior among sub-objects is introduced for parameter refinement via the augmentedLagrange optimization. The effectiveness of the proposed method is verified by the experiments based on simulated and measured data.

  • Statistical Property Guided Feature Extraction for Volume Data

    Li WANG  Xiaoan TANG  Junda ZHANG  Dongdong GUAN  

     
    LETTER-Pattern Recognition

      Pubricized:
    2017/10/13
      Vol:
    E101-D No:1
      Page(s):
    261-264

    Feature visualization is of great significances in volume visualization, and feature extraction has been becoming extremely popular in feature visualization. While precise definition of features is usually absent which makes the extraction difficult. This paper employs probability density function (PDF) as statistical property, and proposes a statistical property guided approach to extract features for volume data. Basing on feature matching, it combines simple liner iterative cluster (SLIC) with Gaussian mixture model (GMM), and could do extraction without accurate feature definition. Further, GMM is paired with a normality test to reduce time cost and storage requirement. We demonstrate its applicability and superiority by successfully applying it on homogeneous and non-homogeneous features.

  • A Hybrid Approach via SRG and IDE for Volume Segmentation

    Li WANG  Xiaoan TANG  Junda ZHANG  Dongdong GUAN  

     
    LETTER-Computer Graphics

      Pubricized:
    2017/06/09
      Vol:
    E100-D No:9
      Page(s):
    2257-2260

    Volume segmentation is of great significances for feature visualization and feature extraction, essentially volume segmentation can be viewed as generalized cluster. This paper proposes a hybrid approach via symmetric region growing (SRG) and information diffusion estimation (IDE) for volume segmentation, the volume dataset is over-segmented to series of subsets by SRG and then subsets are clustered by K-Means basing on distance-metric derived from IDE, experiments illustrate superiority of the hybrid approach with better segmentation performance.