The search functionality is under construction.

Author Search Result

[Author] Xiaobo ZHOU(2hit)

1-2hit
  • Simple Relay Systems with BICM-ID Allowing Intra-Link Errors

    Meng CHENG  Xiaobo ZHOU  Khoirul ANWAR  Tad MATSUMOTO  

     
    PAPER

      Vol:
    E95-B No:12
      Page(s):
    3671-3678

    In this work, a simple doped accumulator (DACC)-assisted relay system is proposed by using bit-interleaved coded modulation with iterative decoding (BICM-ID). An extrinsic information transfer (EXIT) chart analysis shows that DACC keeps the convergence tunnel of the EXIT curves open until almost the (1, 1) point of the mutual information, which avoids the error floor. In the relay system, errors may happen in the source-relay link (intra-link), however, they are allowed in our proposed technique where the correlation knowledge between the source and the relay is exploited at the destination node. Strong codes are not needed and even the systematic source bits can be simply extracted at the relay even though the systematic part may contain some errors. Hence, the complexity of the relay can be significantly reduced, and thereby the proposed system is energy-efficient. Furthermore, the error probability of the intra-link can be estimated at the receiver by utilizing the a posteriori log-likelihood ratios (LLRs) of the two decoders, and it can be further utilized in the iterative processing. Additionally, we provide the analysis of different relay location scenarios and compare the system performances by changing the relay's location. The transmission channels in this paper are assumed to suffer from additive white Gaussian noise (AWGN) and block Rayleigh fading. The theoretical background of this technique is the Slepian-Wolf/Shannon theorem for correlated source coding. The simulation results show that the bit-error-rate (BER) performances of the proposed system are very close to theoretical limits supported by the Slepian-Wolf/Shannon theorem.

  • GREAT-CEO: larGe scale distRibuted dEcision mAking Techniques for Wireless Chief Executive Officer Problems Open Access

    Xiaobo ZHOU  Xin HE  Khoirul ANWAR  Tad MATSUMOTO  

     
    INVITED PAPER

      Vol:
    E95-B No:12
      Page(s):
    3654-3662

    In this paper, we reformulate the issue related to wireless mesh networks (WMNs) from the Chief Executive Officer (CEO) problem viewpoint, and provide a practical solution to a simple case of the problem. It is well known that the CEO problem is a theoretical basis for sensor networks. The problem investigated in this paper is described as follows: an originator broadcasts its binary information sequence to several forwarding nodes (relays) over Binary Symmetric Channels (BSC); the originator's information sequence suffers from independent random binary errors; at the forwarding nodes, they just further interleave, encode the received bit sequence, and then forward it, without making heavy efforts for correcting errors that may occur in the originator-relay links, to the final destination (FD) over Additive White Gaussian Noise (AWGN) channels. Hence, this strategy reduces the complexity of the relay significantly. A joint iterative decoding technique at the FD is proposed by utilizing the knowledge of the correlation due to the errors occurring in the link between the originator and forwarding nodes (referred to as intra-link). The bit-error-rate (BER) performances show that the originator's information can be reconstructed at the FD even by using a very simple coding scheme. We provide BER performance comparison between joint decoding and separate decoding strategies. The simulation results show that excellent performance can be achieved by the proposed system. Furthermore, extrinsic information transfer (EXIT) chart analysis is performed to investigate convergence property of the proposed technique, with the aim of, in part, optimizing the code rate at the originator.