The search functionality is under construction.

Author Search Result

[Author] Xiaodong DENG(2hit)

1-2hit
  • Interim CRC: A Novel Method to Read Large-Size Data from Tags in RFID Systems

    Xiaodong DENG  Mengtian RONG  Tao LIU  

     
    PAPER-Network

      Vol:
    E95-B No:1
      Page(s):
    152-159

    Large capacity tags are becoming available to meet the demands of industry, but the UHF RFID protocol is unable to reliably and efficiently read large data sets from tags. First of all, large data sets are not well protected. The tag merely relies on 16-bit CRC for ensuring the validity of up to 4,096-bit user-specific data in EPCglobal C1G2 protocol. Furthermore, the reliability will be even worse if large capacity tags are implemented using semi-active technology which is likely to prevail among sensor-integrated RFID tags. Since semi-active tags greatly alleviate the performance limitation imposed by the turn-on power of the tag chip, backscattering signal of semi-active tags could be a serious challenge for most readers because it is much weaker than signals emitted by passive tags due to longer reading distance. In this paper, Interim CRC is presented to enhance transmission reliability and efficiency when the tag is backscattering a large data set. By taking advantage of Interim CRC, the large data set can be divided into several blocks, and 16-bit checksum is calculated over each block. The tag backscatters all blocks at the first time and only retransmits certain blocks if CRC error occurs in those blocks. The result of simulation shows that the reading error rate can be confined to a preset threshold and the accumulative total of transmitted data are greatly reduced if optimal block size and transmission times are complied with. The simulation also conclusively proves that semi-active tags derive even longer reading range from Interim CRC. In addition, Interim CRC is totally compliant with the EPCglobal C1G2 protocol. It fully makes use of CRC-16 encoder and does not involve any other data encoding schematics and hardware modifications.

  • A Reliable Tag Anti-Collision Algorithm for Mobile Tags

    Xiaodong DENG  Mengtian RONG  Tao LIU  

     
    LETTER-Information Network

      Vol:
    E95-D No:5
      Page(s):
    1527-1530

    As RFID technology is being more widely adopted, it is fairly common to read mobile tags using RFID systems, such as packages on conveyer belt and unit loads on pallet jack or forklift truck. In RFID systems, multiple tags use a shared medium for communicating with a reader. It is quite possible that tags will exit the reading area without being read, which results in tag leaking. In this letter, a reliable tag anti-collision algorithm for mobile tags is proposed. It reliably estimates the expectation of the number of tags arriving during a time slot when new tags continually enter the reader's reading area and no tag leaves without being read. In addition, it gives priority to tags that arrived early among read cycles and applies the expectation of the number of tags arriving during a time slot to the determination of the number of slots in the initial inventory round of the next read cycle. Simulation results show that the reliability of the proposed algorithm is close to that of DFSA algorithm when the expectation of the number of tags entering the reading area during a time slot is a given, and is better than that of DFSA algorithm when the number of time slots in the initial inventory round of next read cycle is set to 1 assuming that the number of tags arriving during a time slot follows Poisson distribution.