The search functionality is under construction.

Author Search Result

[Author] Xiaohua WANG(5hit)

1-5hit
  • Research on Indoor Air Purification Efficiency of Collecting Pre-Charged Suspended Particles by Applying Magnetic Field

    Mingzhe RONG  Xiaohua WANG  Naiwu YUAN  

     
    PAPER-New Technology and Automotive Applications

      Vol:
    E87-C No:8
      Page(s):
    1241-1247

    It is novel to apply magnetic field in the indoor air purification by collecting pre-charged suspended particles. Based on experiments and analysis of relative data, the effects of some influential factors (the number of discharge electrode, the polarity and magnitude of discharge voltage, the direction and magnitude of magnetic field, the initial velocity of charged particles, the distance between particle collecting plates) on the efficiency of air purification are discussed. The results indicate that the purification efficiency is improved by applying the proper magnetic field, -6 kV direct current voltage is an optimal voltage and there are optimal magnitudes of the distance between collecting plate and the initial velocity of particles in the purification process.

  • Simulation of Breaking Characteristics of a 550 kV Single-Break Tank Circuit Breaker

    Hongfei ZHAO  Xiaohua WANG  Zhiying MA  Mingzhe RONG  Yan LI  

     
    PAPER

      Vol:
    E94-C No:9
      Page(s):
    1402-1408

    An arc model has been applied in this paper to study the fundamental interruption environment of a 550 kV SF6 single-break tank circuit breaker. The full differential model takes into account of all important physical mechanisms and is implemented into a commercial Computational Fluid Dynamics (CFD) package, PHOENICS. The model takes a magneto-hydro-dynamics (MHD) approach and the governing equations are solved using the Finite Volume Method (FVM). Through the simulation, the flow velocity vector and mach number for capacitive current switching and short-circuit current breaking are analyzed, and flow dynamic characteristics are obtained. The simulation can provide helpful reference for the design of 550 kV SF6 single-break tank circuit breaker.

  • Research on Mechanical Fault Prediction Algorithm for Circuit Breaker Based on Sliding Time Window and ANN

    Xiaohua WANG  Mingzhe RONG  Juan QIU  Dingxin LIU  Biao SU  Yi WU  

     
    PAPER-Contactors & Circuit Breakers

      Vol:
    E91-C No:8
      Page(s):
    1299-1305

    A new type of algorithm for predicting the mechanical faults of a vacuum circuit breaker (VCB) based on an artificial neural network (ANN) is proposed in this paper. There are two types of mechanical faults in a VCB: operation mechanism faults and tripping circuit faults. An angle displacement sensor is used to measure the main axle angle displacement which reflects the displacement of the moving contact, to obtain the state of the operation mechanism in the VCB, while a Hall current sensor is used to measure the trip coil current, which reflects the operation state of the tripping circuit. Then an ANN prediction algorithm based on a sliding time window is proposed in this paper and successfully used to predict mechanical faults in a VCB. The research results in this paper provide a theoretical basis for the realization of online monitoring and fault diagnosis of a VCB.

  • Research on Effect of Ferromagnetic Material on the Critical Current of Bi-2223 Tape

    Yi WU  Mingzhe RONG  Jian LI  Xiaohua WANG  

     
    PAPER-Contact Phenomena

      Vol:
    E91-C No:8
      Page(s):
    1222-1227

    In this paper we mainly focus on the effect of a ferromagnetic material on the critical current of Bi-2223 tape. The magnetic field distributions of tapes with several different layouts of a ferromagnetic material are investigated by calculation and the corresponding critical current is tested experimentally. The analysis indicates that the critical current of the tape can be improved effectively by laying the ferromagnetic material perpendicularly next to the tape edge. Furthermore, various other ferromagnetic parameters are also important for reducing the magnetic field induced by the current flowing through the tape.

  • Investigation on Propagation Characteristics of PD-induced Electromagnetic Wave in T-Shaped GIS Based on FDTD Method

    Mingzhe RONG  Tianhui LI  Xiaohua WANG  Dingxin LIU  Anxue ZHANG  

     
    PAPER

      Vol:
    E97-C No:9
      Page(s):
    880-887

    When ultra-high-frequency (UHF) method is applied in partial discharge (PD) detection for GIS, the propagation process and rules of electromagnetic (EM) wave need to be understood clearly for conducting diagnosis and assessment about the real insulation status. The preceding researches are mainly concerning about the radial component of the UHF signal, but the propagation of the signal components in axial and radial directions and that perpendicular to the radial direction of the GIS tank are rarely considered. So in this paper, for a 252,kV GIS with T-shaped structure (TS), the propagation and attenuation of PD-induced EM wave in different circumferential angles and directions are investigated profoundly in time and frequency domain based on Finite Difference Time Domain (FDTD) method. The attenuation rules of the peak to peak value (Vpp) and cumulative energy are concluded. By comparing the results of straight branch and T branch, the influence of T-shaped structure over the propagation of different signal components are summarized. Moreover, the new circumferential and axial location methods proposed in the previous work are verified to be still applicable. This paper discusses the propagation mechanism of UHF signal in T-shaped tank, which provides some referential significance towards the utilization of UHF technique and better implementation of PD detection.