The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Xiaojun WU(1hit)

1-1hit
  • Image Based Coding of Spatial Probability Distribution on Human Dynamics Data

    Hideaki KIMATA  Xiaojun WU  Ryuichi TANIDA  

     
    PAPER

      Pubricized:
    2021/06/24
      Vol:
    E104-D No:10
      Page(s):
    1545-1554

    The need for real-time use of human dynamics data is increasing. The technical requirements for this include improved databases for handling a large amount of data as well as highly accurate sensing of people's movements. A bitmap index format has been proposed for high-speed processing of data that spreads in a two-dimensional space. Using the same format is expected to provide a service that searches queries, reads out desired data, visualizes it, and analyzes it. In this study, we propose a coding format that enables human dynamics data to compress it in the target data size, in order to save data storage for successive increase of real-time human dynamics data. In the proposed method, the spatial population distribution, which is expressed by a probability distribution, is approximated and compressed using the one-pixel one-byte data format normally used for image coding. We utilize two kinds of approximation, which are accuracy of probability and precision of spatial location, in order to control the data size and the amount of information. For accuracy of probability, we propose a non-linear mapping method for the spatial distribution, and for precision of spatial location, we propose spatial scalable layered coding to refine the mesh level of the spatial distribution. Also, in order to enable additional detailed analysis, we propose another scalable layered coding that improves the accuracy of the distribution. We demonstrate through experiments that the proposed data approximation and coding format achieve sufficient approximation of spatial population distribution in the given condition of target data size.