1-1hit |
Xiaokan WANG Xia MAO Catalin-Daniel CALEANU
For improving the nonlinear alignment performance of Active Appearance Models (AAM), we apply a variant of the nonlinear manifold learning algorithm, Local Linear Embedded, to model shape-texture manifold. Experiments show that our method maintains a lower alignment residual to some small scale movements compared with traditional AAM based on Principal Component Analysis (PCA) and makes a successful alignment to large scale motions when PCA-AAM failed.