The search functionality is under construction.

Author Search Result

[Author] Xijian ZHONG(2hit)

1-2hit
  • Fair Deployment of an Unmanned Aerial Vehicle Base Station for Maximal Coverage

    Yancheng CHEN  Ning LI  Xijian ZHONG  Yan GUO  

     
    PAPER

      Pubricized:
    2019/04/26
      Vol:
    E102-B No:10
      Page(s):
    2014-2020

    Unmanned aerial vehicle mounted base stations (UAV-BSs) can provide wireless cellular service to ground users in a variety of scenarios. The efficient deployment of such UAV-BSs while optimizing the coverage area is one of the key challenges. We investigate the deployment of UAV-BS to maximize the coverage of ground users, and further analyzes the impact of the deployment of UAV-BS on the fairness of ground users. In this paper, we first calculated the location of the UAV-BS according to the QoS requirements of the ground users, and then the fairness of ground users is taken into account by calculating three different fairness indexes. The performance of two genetic algorithms, namely Standard Genetic Algorithm (SGA) and Multi-Population Genetic Algorithm (MPGA) are compared to solve the optimization problem of UAV-BS deployment. The simulations are presented showing that the performance of the two algorithms, and the fairness performance of the ground users is also given.

  • Decentralized Relay Selection for Large-Scale Dynamic UAVs Networks: A Mood-Driven Approach

    Xijian ZHONG  Yan GUO  Ning LI  Shanling LI  Aihong LU  

     
    LETTER-Communication Theory and Signals

      Vol:
    E102-A No:12
      Page(s):
    2031-2036

    In the large-scale multi-UAV systems, the direct link may be invalid for two remote nodes on account of the constrained power or complex communication environment. Idle UAVs may work as relays between the sources and destinations to enhance communication quality. In this letter, we investigate the opportunistic relay selection for the UAVs dynamic network. On account of the time-varying channel states and the variable numbers of sources and relays, relay selection becomes much more difficult. In addition, information exchange among all nodes may bring much cost and it is difficult to implement in practice. Thus, we propose a decentralized relay selection approach based on mood-driven mechanism to combat the dynamic characteristics, aiming to maximize the total capacity of the network without information exchange. With the proposed approach, the sources can make decisions only according to their own current states and update states according to immediate rewards. Numerical results show that the proposed approach has attractive properties.