1-1hit |
Kun JIANG Xingshen SONG Yuexiang YANG
Index compression is partially responsible for the current performance achievements of Internet search engines. Among many latest compression techniques, Simple9 can pack as many integers as possible into a single 32-bit machine word using 9 different padding modes. However, the number of wasted bits in Simple9 remains large. In previous works, researchers have focused on reducing the unused trailing bits of the padding modes and have proposed various additional modes that make full use of the cases of the status bits. Instead, we focus on the wasted bits in the integer list, padding extra zeros for a complete dense mode when the number of integers is not enough to fit a complete mode. More precisely, we first propose a novel index compression method called SimpleD with dense padding modes to achieve a more compact storage compared with that of Simple9. We then design an innovative metric for extracting the inserted extra zero integers during the decoding phase. Experiments on the TREC WT2G and GOV2 datasets show that our encoder outperforms Simple9 while still retaining a very fast decompression speed.