The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Xingzhong XIONG(1hit)

1-1hit
  • Reinforced Tracker Based on Hierarchical Convolutional Features

    Xin ZENG  Lin ZHANG  Zhongqiang LUO  Xingzhong XIONG  Chengjie LI  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2022/03/10
      Vol:
    E105-D No:6
      Page(s):
    1225-1233

    In recent years, the development of visual tracking is getting better and better, but some methods cannot overcome the problem of low accuracy and success rate of tracking. Although there are some trackers will be more accurate, they will cost more time. In order to solve the problem, we propose a reinforced tracker based on Hierarchical Convolutional Features (HCF for short). HOG, color-naming and grayscale features are used with different weights to supplement the convolution features, which can enhance the tracking robustness. At the same time, we improved the model update strategy to save the time costs. This tracker is called RHCF and the code is published on https://github.com/z15846/RHCF. Experiments on the OTB2013 dataset show that our tracker can validly achieve the promotion of the accuracy and success rate.