The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Xinyu HE(2hit)

1-2hit
  • An Active Transfer Learning Framework for Protein-Protein Interaction Extraction

    Lishuang LI  Xinyu HE  Jieqiong ZHENG  Degen HUANG  Fuji REN  

     
    PAPER-Natural Language Processing

      Pubricized:
    2017/10/30
      Vol:
    E101-D No:2
      Page(s):
    504-511

    Protein-Protein Interaction Extraction (PPIE) from biomedical literatures is an important task in biomedical text mining and has achieved great success on public datasets. However, in real-world applications, the existing PPI extraction methods are limited to label effort. Therefore, transfer learning method is applied to reduce the cost of manual labeling. Current transfer learning methods suffer from negative transfer and lower performance. To tackle this problem, an improved TrAdaBoost algorithm is proposed, that is, relative distribution is introduced to initialize the weights of TrAdaBoost to overcome the negative transfer caused by domain differences. To make further improvement on the performance of transfer learning, an approach combining active learning with the improved TrAdaBoost is presented. The experimental results on publicly available PPI corpora show that our method outperforms TrAdaBoost and SVM when the labeled data is insufficient,and on document classification corpora, it also illustrates that the proposed approaches can achieve better performance than TrAdaBoost and TPTSVM in final, which verifies the effectiveness of our methods.

  • Multi-Level Attention Based BLSTM Neural Network for Biomedical Event Extraction

    Xinyu HE  Lishuang LI  Xingchen SONG  Degen HUANG  Fuji REN  

     
    PAPER-Natural Language Processing

      Pubricized:
    2019/04/26
      Vol:
    E102-D No:9
      Page(s):
    1842-1850

    Biomedical event extraction is an important and challenging task in Information Extraction, which plays a key role for medicine research and disease prevention. Most of the existing event detection methods are based on shallow machine learning methods which mainly rely on domain knowledge and elaborately designed features. Another challenge is that some crucial information as well as the interactions among words or arguments may be ignored since most works treat words and sentences equally. Therefore, we employ a Bidirectional Long Short Term Memory (BLSTM) neural network for event extraction, which can skip handcrafted complex feature extraction. Furthermore, we propose a multi-level attention mechanism, including word level attention which determines the importance of words in a sentence, and the sentence level attention which determines the importance of relevant arguments. Finally, we train dependency word embeddings and add sentence vectors to enrich semantic information. The experimental results show that our model achieves an F-score of 59.61% on the commonly used dataset (MLEE) of biomedical event extraction, which outperforms other state-of-the-art methods.