1-1hit |
Hong LIU Yang YANG Xiumei YANG Zhengmin ZHANG
Small cell networks have been promoted as an enabling solution to enhance indoor coverage and improve spectral efficiency. Users usually deploy small cells on-demand and pay no attention to global profile in residential areas or offices. The reduction of cell radius leads to dense deployment which brings intractable computation complexity for resource allocation. In this paper, we develop a semi-distributed resource allocation algorithm by dividing small cell networks into clusters with limited inter-cluster interference and selecting a reference cluster for interference estimation to reduce the coordination degree. Numerical results show that the proposed algorithm can maintain similar system performance while having low complexity and reduced information exchange overheads.