The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Yali LI(2hit)

1-2hit
  • Discriminative Middle-Level Parts Mining for Object Detection

    Dong LI  Yali LI  Shengjin WANG  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2015/08/03
      Vol:
    E98-D No:11
      Page(s):
    1950-1957

    Middle-level parts have attracted great attention in the computer vision community, acting as discriminative elements for objects. In this paper we propose an unsupervised approach to mine discriminative parts for object detection. This work features three aspects. First, we introduce an unsupervised, exemplar-based training process for part detection. We generate initial parts by selective search and then train part detectors by exemplar SVM. Second, a part selection model based on consistency and distinctiveness is constructed to select effective parts from the candidate pool. Third, we combine discriminative part mining with the deformable part model (DPM) for object detection. The proposed method is evaluated on the PASCAL VOC2007 and VOC2010 datasets. The experimental results demons-trate the effectiveness of our method for object detection.

  • Exploiting EEG Channel Correlations in P300 Speller Paradigm for Brain-Computer Interface

    Yali LI  Hongma LIU  Shengjin WANG  

     
    PAPER-Biological Engineering

      Pubricized:
    2016/03/07
      Vol:
    E99-D No:6
      Page(s):
    1653-1662

    A brain-computer interface (BCI) translates the brain activity into commands to control external devices. P300 speller based character recognition is an important kind of application system in BCI. In this paper, we propose a framework to integrate channel correlation analysis into P300 detection. This work is distinguished by two key contributions. First, a coefficient matrix is introduced and constructed for multiple channels with the elements indicating channel correlations. Agglomerative clustering is applied to group correlated channels. Second, the statistics of central tendency are used to fuse the information of correlated channels and generate virtual channels. The generated virtual channels can extend the EEG signals and lift up the signal-to-noise ratio. The correlated features from virtual channels are combined with original signals for classification and the outputs of discriminative classifier are used to determine the characters for spelling. Experimental results prove the effectiveness and efficiency of the channel correlation analysis based framework. Compared with the state-of-the-art, the recognition rate was increased by both 6% with 5 and 10 epochs by the proposed framework.