The search functionality is under construction.

Author Search Result

[Author] Yanbin ZHANG(3hit)

1-3hit
  • Efficient Weak Signals Acquisition Strategy for GNSS Receivers

    Weijun LU  Yanbin ZHANG  Dengyun LEI  Dunshan YU  

     
    PAPER-Navigation, Guidance and Control Systems

      Vol:
    E99-B No:1
      Page(s):
    288-295

    The key factors in overcoming for weak global navigation satellite systems (GNSS) signal acquisition are sensitivity and dwell time. In the conventional MAX/TC criteria, a preset threshold value is used to determine whether the signal exists. Thus the threshold is calculated carefully to balance the sensitivity and the dwell time. Affected by various environment noise and interference, the acquisition circuit will enter verifying mode frequently to eliminate false alarms, which will extend the mean acquisition time (MAT). Based on the periodicity of spread spectrum code in GNSS, this paper presents an improved double-dwell scheme that uses no threshold in detecting weak GNSS signals. By adopting this method, the acquisition performance of weak signal is significantly improved. Theoretical analysis and numerical simulation are presented detailed. Compared with the conventional MAX/TC criteria, the proposed method achieves improved performance in terms of detection probability and false alarm rate. Furthermore, the MAT decreases 15s when C/N0 is above 20dB-Hz. This can enhance the receiver sensitivity and shorten the time to first fix (TTFF).

  • Effective PPS Signal Generation with Predictive Synchronous Loop for GPS

    YanBin ZHANG  WeiJun LU  DengYun LEI  YongCan HUANG  DunShan YU  

     
    PAPER-Navigation, Guidance and Control Systems

      Vol:
    E97-B No:8
      Page(s):
    1742-1749

    The Global Position System (GPS), which is well known as a global tool for positioning, is also the primary system for time transfer. GPS can deliver very precise time to every corner of the world. Usually, a GPS receiver indicates the precise time by means of the 1PPS (one pulse per second) signal. This paper studies the precise time transfer system structure of GPS receivers and then proposes an effective PPS signal generation method with predictive synchronous loop, combining phase error prediction and dynamic threshold adjustment. A GPS time transfer system is implemented and measured in detail to demonstrate the validity of the proposed algorithm. Assuming the receiver clock rate of 16.368MHz, the proposed method can achieve the accuracy of ±20ns in the scope 1δ which can meet the requirements of the vast majority of occasions. Through a long period of testing, we prove the feasibility of this algorithm experimentally.

  • Balance Differential Coherent Bit Synchronization Algorithm for GNSS Receiver

    Dengyun LEI  Weijun LU  Yanbin ZHANG  Dunshan YU  

     
    PAPER-Navigation, Guidance and Control Systems

      Vol:
    E98-B No:6
      Page(s):
    1133-1140

    Due to low signal-to-carrier ratio and high dynamic, the frequency deviation affects the bit synchronization in GNSS receiver. This paper proposes a balance differential coherent bit synchronization algorithm, which uses the differential coherent method to eliminate the influence of the frequency deviation. By enlarging the differential distance, the proposed algorithm achieves higher bit synchronization rates. Combining two complementary differential coherent parts, the proposed algorithm avoids the unbalance problem and the attenuation of accumulation. Furthermore, a general architecture is presented to reduce the system complexity. Experimental results show that the proposed algorithm improves the sensitivity of bit synchronization by 3∼7dB compared with the previous method.