The search functionality is under construction.

Author Search Result

[Author] Yang WANG(14hit)

1-14hit
  • Digital Watermarking Using Fractal Image Coding

    Cheng-Hao LI  Shuenn-Shyang WANG  

     
    LETTER-Information Security

      Vol:
    E83-A No:6
      Page(s):
    1286-1288

    A new digital watermark approach based on fractal image coding is proposed in this letter. We present a way to use the fractal code as a means of embedding a watermark. The proposed approach has shown to be resistant to the JPEG lossy compression. Moreover, the digital watermark can be simply extracted from the watermarked image without resorting to the original image.

  • Joint Optimization of FeICIC and Spectrum Allocation for Spectral and Energy Efficient Heterogeneous Networks

    Xuefang NIE  Yang WANG  Liqin DING  Jiliang ZHANG  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2017/12/18
      Vol:
    E101-B No:6
      Page(s):
    1462-1475

    Cellular heterogeneous networks (HetNets) with densely deployed small cells can effectively boost network capacity. The co-channel interference and the prominent energy consumption are two crucial issues in HetNets which need to be addressed. Taking the traffic variations into account, this paper proposes a theoretical framework to analyze spectral efficiency (SE) and energy efficiency (EE) considering jointly further-enhanced inter-cell interference coordination (FeICIC) and spectrum allocation (SA) via a stochastic geometric approach for a two-tier downlink HetNet. SE and EE are respectively derived and validated by Monte Carlo simulations. To create spectrum and energy efficient HetNets that can adapt to traffic demands, a non-convex optimization problem with the power control factor, resource partitioning fraction and number of subchannels for the SE and EE tradeoff is formulated, based on which, an iterative algorithm with low complexity is proposed to achieve the sub-optimal solution. Numerical results confirm the effectiveness of the joint FeICIC and SA scheme in HetNets. Meanwhile, a system design insight on resource allocation for the SE and EE tradeoff is provided.

  • Revisiting the Rich Club of the Internet AS-Level Topology

    Yangyang WANG  Jun BI  Jianping WU  

     
    LETTER-Network

      Vol:
    E96-B No:3
      Page(s):
    900-904

    We evaluate the rich-club property of the Internet topology at the autonomous system (AS) level by comparing the Internet AS graphs of traceroute and BGP, and the synthetic graphs of PFP model. The results indicate that, for rich-club coefficient, PFP model can exactly match traceroute AS graphs in the early years around 2002, but it has significantly deviated from the grown AS graphs since about 2010.

  • On the Bit Error Probability of OFDM and FBMC-OQAM Systems in Rayleigh and Rician Multipath Fading Channels Open Access

    Liming LI  Yang WANG  Liqin DING  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2019/06/17
      Vol:
    E102-B No:12
      Page(s):
    2276-2285

    Filter bank multicarrier with offset quadrature amplitude modulation (FBMC-OQAM) is considered an alternative to conventional orthogonal frequency division multiplexing (OFDM) to meet the various requirements proposed by future communication networks. Among the different perspectives on the merits of FBMC-OQAM and OFDM, a straightforward metric is the bit error probability (BEP). This paper presents a general analytical framework for BEP evaluation that is applicable to FBMC-OQAM and OFDM systems in both Rayleigh and Rician multipath fading channels. Explicit BEP expressions are derived for Gray-coded pulse amplitude modulation (PAM) and square quadrature amplitude modulation (QAM) signals with arbitrary constellation sizes. The theoretical analysis results show excellent agreement with the numerical simulation results in different channel scenarios.

  • A Simplified Coupled Model for Square Spiral Inductor on Silicon Substrate

    Yu-Yang WANG  Zheng-Fan LI  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E88-C No:6
      Page(s):
    1310-1314

    Coupled model of square spiral inductor is simplified in this work for the purpose of fast estimation of inductor performance. The inductor structure is divided into two coupled parallel multi-conductor networks without corner segments. Two-dimensional numerical method is applied to each network to extract its distributed parameters for network matrices calculation. Equivalent circuit is built after connecting the two networks. Verification with momentum and measurement results demonstrates the accuracy and scalability of this model.

  • Compact Eight-Way Ka-Band Power Divider/Combiner Based on Double-Layer Finline

    Yihong ZHOU  Jiayin LI  Haiyan JIN  Haiyang WANG  

     
    LETTER-Microwaves, Millimeter-Waves

      Vol:
    E93-C No:9
      Page(s):
    1484-1486

    A novel resonant eight-way divider/combiner based on a double-layer finline is presented and studied. Experiments on the compact eight-way passive divider/combiner demonstrate a minimum overall insertion loss of 1 dB at 35.3 GHz, and the inserting loss across 34-36 GHz is less than 1.9 dB.

  • Compact Four-Way Ka-Band Power Divider/Combiner Based on Finline

    Yihong ZHOU  Jiayin LI  Haiyan JIN  Haiyang WANG  

     
    LETTER-Microwaves, Millimeter-Waves

      Vol:
    E93-C No:5
      Page(s):
    703-705

    A novel resonant four-way divider/combiner based on finline is presented and studied. This divider/combiner designed in 34-36 GHz is composed of new probe coupling units between finline to microstrip lines. The measured power-combining efficiency of this circuit at 34.85 GHz is 83%.

  • Spatial Channel Mapping Matrix Design in Single-Relay System

    ChaoYi ZHANG  YanDong ZHAO  DongYang WANG  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E98-B No:3
      Page(s):
    477-484

    Multi-antenna relay transport protocols are analysed, the transmitting matrix of relay node can split into a forward and a backward filters, and these two filters are cascade connection. Based on the zero-forcing relaying protocol, a spatial channel mapping matrix is added between these two filters, and a unified framework of spatial channel mapping matrix is proposed. Then, various linear system designs are summarized, the spatial channel mapping matrix is used to reduce destination noise, so that the relaying noise is suppressed in destination node, and the transmitting power of relay is efficiently utilized. Meanwhile, source node preprocessing operation and destination node equalizer are considered. Simulation results show that the spatial channel mapping matrix has an advantage in terms of system outage probability and capacity performance, and the result is consistent with theoretical analysis.

  • Convolutional Auto-Encoder and Adversarial Domain Adaptation for Cross-Corpus Speech Emotion Recognition

    Yang WANG  Hongliang FU  Huawei TAO  Jing YANG  Hongyi GE  Yue XIE  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2022/07/12
      Vol:
    E105-D No:10
      Page(s):
    1803-1806

    This letter focuses on the cross-corpus speech emotion recognition (SER) task, in which the training and testing speech signals in cross-corpus SER belong to different speech corpora. Existing algorithms are incapable of effectively extracting common sentiment information between different corpora to facilitate knowledge transfer. To address this challenging problem, a novel convolutional auto-encoder and adversarial domain adaptation (CAEADA) framework for cross-corpus SER is proposed. The framework first constructs a one-dimensional convolutional auto-encoder (1D-CAE) for feature processing, which can explore the correlation among adjacent one-dimensional statistic features and the feature representation can be enhanced by the architecture based on encoder-decoder-style. Subsequently the adversarial domain adaptation (ADA) module alleviates the feature distributions discrepancy between the source and target domains by confusing domain discriminator, and specifically employs maximum mean discrepancy (MMD) to better accomplish feature transformation. To evaluate the proposed CAEADA, extensive experiments were conducted on EmoDB, eNTERFACE, and CASIA speech corpora, and the results show that the proposed method outperformed other approaches.

  • Improved End-to-End Speech Recognition Using Adaptive Per-Dimensional Learning Rate Methods

    Xuyang WANG  Pengyuan ZHANG  Qingwei ZHAO  Jielin PAN  Yonghong YAN  

     
    LETTER-Acoustic modeling

      Pubricized:
    2016/07/19
      Vol:
    E99-D No:10
      Page(s):
    2550-2553

    The introduction of deep neural networks (DNNs) leads to a significant improvement of the automatic speech recognition (ASR) performance. However, the whole ASR system remains sophisticated due to the dependent on the hidden Markov model (HMM). Recently, a new end-to-end ASR framework, which utilizes recurrent neural networks (RNNs) to directly model context-independent targets with connectionist temporal classification (CTC) objective function, is proposed and achieves comparable results with the hybrid HMM/DNN system. In this paper, we investigate per-dimensional learning rate methods, ADAGRAD and ADADELTA included, to improve the recognition of the end-to-end system, based on the fact that the blank symbol used in CTC technique dominates the output and these methods give frequent features small learning rates. Experiment results show that more than 4% relative reduction of word error rate (WER) as well as 5% absolute improvement of label accuracy on the training set are achieved when using ADADELTA, and fewer epochs of training are needed.

  • A Novel Traveling Wave Power Divider/Combiner Based on Finline

    Yihong ZHOU  Jiayin LI  Haiyang WANG  Haiyan JIN  

     
    LETTER-Microwaves, Millimeter-Waves

      Vol:
    E93-C No:11
      Page(s):
    1648-1650

    In this letter, a novel wideband traveling wave power divider/combiner based on the finline with irises is presented and studied. Experiments on the four-way passive divider/combiner demonstrate a minimum overall insertion loss of 1.5 dB at 35.8 GHz, and the insertion loss across 32-38 GHz is less than 2.5 dB.

  • Improving Per-Node Computing Efficiency by an Adaptive Lock-Free Scheduling Model

    Zhishuo ZHENG  Deyu QI  Naqin ZHOU  Xinyang WANG  Mincong YU  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2018/07/06
      Vol:
    E101-D No:10
      Page(s):
    2423-2435

    Job scheduling on many-core computers with tens or even hundreds of processing cores is one of the key technologies in High Performance Computing (HPC) systems. Despite many scheduling algorithms have been proposed, scheduling remains a challenge for executing highly effective jobs that are assigned in a single computing node with diverse scheduling objectives. On the other hand, the increasing scale and the need for rapid response to changing requirements are hard to meet with existing scheduling models in an HPC node. To address these issues, we propose a novel adaptive scheduling model that is applied to a single node with a many-core processor; this model solves the problems of scheduling efficiency and scalability through an adaptive optimistic control mechanism. This mechanism exposes information such that all the cores are provided with jobs and the tools necessary to take advantage of that information and thus compete for resources in an uncoordinated manner. At the same time, the mechanism is equipped with adaptive control, allowing it to adjust the number of running tools dynamically when frequent conflict happens. We justify this scheduling model and present the simulation results for synthetic and real-world HPC workloads, in which we compare our proposed model with two widely used scheduling models, i.e. multi-path monolithic and two-level scheduling. The proposed approach outperforms the other models in scheduling efficiency and scalability. Our results demonstrate that the adaptive optimistic control affords significant improvements for HPC workloads in the parallelism of the node-level scheduling model and performance.

  • Intrusion Detection Model of Internet of Things Based on LightGBM Open Access

    Guosheng ZHAO  Yang WANG  Jian WANG  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2023/02/20
      Vol:
    E106-B No:8
      Page(s):
    622-634

    Internet of Things (IoT) devices are widely used in various fields. However, their limited computing resources make them extremely vulnerable and difficult to be effectively protected. Traditional intrusion detection systems (IDS) focus on high accuracy and low false alarm rate (FAR), making them often have too high spatiotemporal complexity to be deployed in IoT devices. In response to the above problems, this paper proposes an intrusion detection model of IoT based on the light gradient boosting machine (LightGBM). Firstly, the one-dimensional convolutional neural network (CNN) is used to extract features from network traffic to reduce the feature dimensions. Then, the LightGBM is used for classification to detect the type of network traffic belongs. The LightGBM is more lightweight on the basis of inheriting the advantages of the gradient boosting tree. The LightGBM has a faster decision tree construction process. Experiments on the TON-IoT and BoT-IoT datasets show that the proposed model has stronger performance and more lightweight than the comparison models. The proposed model can shorten the prediction time by 90.66% and is better than the comparison models in accuracy and other performance metrics. The proposed model has strong detection capability for denial of service (DoS) and distributed denial of service (DDoS) attacks. Experimental results on the testbed built with IoT devices such as Raspberry Pi show that the proposed model can perform effective and real-time intrusion detection on IoT devices.

  • Fronthaul Constrained Coordinated Transmission in Cloud-Based 5G Radio Access Network: Energy Efficiency Perspective

    Ying SUN  Yang WANG  Yuqing ZHONG  

     
    PAPER-Network

      Pubricized:
    2017/02/08
      Vol:
    E100-B No:8
      Page(s):
    1343-1351

    The cloud radio access network (C-RAN) is embracing unprecedented popularity in the evolution of current RAN towards 5G. One of the essential benefits of C-RAN is facilitating cooperative transmission to enhance capacity and energy performances. In this paper, we argue that the conventional symmetric coordination in which all antennas participate in transmission does not necessarily lead to an energy efficient C-RAN. Further, the current assessments of energy consumption should be modified to match this shifted paradigm in network architecture. Towards this end, this paper proposes an asymmetric coordination scheme to optimize the energy efficiency of C-RAN. Specifically, asymmetric coordination is approximated and formulated as a joint antenna selection and power allocation problem, which is then solved by a proposed sequential-iterative algorithm. A modular power consumption model is also developed to convert the computational complexity of coordination into baseband power consumption. Simulations verify the performance benefits of our proposed asymmetric coordination in effectively enhancing system energy efficiency.