1-2hit |
Yohei KAWAGUCHI Masahito TOGAMI Hisashi NAGANO Yuichiro HASHIMOTO Masuyuki SUGIYAMA Yasuaki TAKADA
A new algorithm for separating mass spectra into individual substances for explosives detection is proposed. In the field of mass spectrometry, separation methods, such as principal-component analysis (PCA) and independent-component analysis (ICA), are widely used. All components, however, have no negative values, and the orthogonality condition imposed on components also does not necessarily hold in the case of mass spectra. Because these methods allow negative values and PCA imposes an orthogonality condition, they are not suitable for separation of mass spectra. The proposed algorithm is based on probabilistic latent-component analysis (PLCA). PLCA is a statistical formulation of non-negative matrix factorization (NMF) using KL divergence. Because PLCA imposes the constraint of non-negativity but not orthogonality, the algorithm is effective for separating components of mass spectra. In addition, to estimate the components more accurately, a sparsity constraint is applied to PLCA for explosives detection. The main contribution is industrial application of the algorithm into an explosives-detection system. Results of an experimental evaluation of the algorithm with data obtained in a real railway station demonstrate that the proposed algorithm outperforms PCA and ICA. Also, results of calculation time demonstrate that the algorithm can work in real time.
Yohei KAWAGUCHI Masahito TOGAMI Hisashi NAGANO Yuichiro HASHIMOTO Masuyuki SUGIYAMA Yasuaki TAKADA
A new algorithm for separating mass spectra into individual substances is proposed for explosives detection. The conventional algorithm based on probabilistic latent component analysis (PLCA) is effective in many cases because it makes use of the fact that non-negativity and sparsity hold for mass spectra in explosives detection. The algorithm, however, fails to separate mass spectra in some cases because uncertainty can not be resolved only by non-negativity and sparsity constraints. To resolve the uncertainty, an algorithm based on shift-invariant PLCA (SIPLCA) utilizing temporal correlation of mass spectra is proposed in this paper. In addition, to prevent overfitting, the temporal correlation is modeled with a function representing attenuation by focusing on the fact that the amount of a substance is attenuated continuously and slowly with time. Results of an experimental evaluation of the algorithm with data obtained in a real railway station demonstrate that the proposed algorithm outperforms the PLCA-based conventional algorithm and the simple SIPLCA-based one. The main novelty of this paper is that an evaluation of the detection performance of explosives detection is demonstrated. Results of the evaluation indicate that the proposed separation algorithm can improve the detection performance.