The search functionality is under construction.

Author Search Result

[Author] Yasunori KOBORI(4hit)

1-4hit
  • Transient Response Improvement of DC-DC Buck Converter by a Slope Adjustable Triangular Wave Generator

    Shu WU  Yasunori KOBORI  Nobukazu TSUKIJI  Haruo KOBAYASHI  

     
    PAPER-Energy in Electronics Communications

      Vol:
    E98-B No:2
      Page(s):
    288-295

    This paper describes a simple-yet-effective control method for a DC-DC buck converter with voltage mode control (VMC), with a triangular wave generator (TWG) which regulates the slope of triangular wave based on the input and output voltages of the converter. Using the proposed TWG, both the load and line transient responses are improved. Since the TWG provides a line feed-forward control for the line transient response, it increases the open-loop bandwidth, and then better dynamic performance is obtained. Additional required circuit components are only a voltage controlled linear resistor (VCR) and a voltage controlled current source (VCCS). Compared with the conventional voltage control, the proposed method significantly improves the line and load transient responses. Furthermore this triangular wave slope regulation scheme is simple compared to digital feed-forward control scheme that requires non-linear calculation. Simulation results shows the effectiveness of the proposed method.

  • Analysis of Coupled Inductors for Low-Ripple Fast-Response Buck Converter

    Santhos A. WIBOWO  Zhang TING  Masashi KONO  Tetsuya TAURA  Yasunori KOBORI  Ken-ichi ONDA  Haruo KOBAYASHI  

     
    LETTER

      Vol:
    E92-A No:2
      Page(s):
    451-455

    This letter presents an analysis of characteristics of multiphase buck converters with coupled inductors. We derive equivalent inductances that provide both low per-phase steady-state ripple current and fast transient response. The characteristics of coupled-inductor circuits--low per-phase ripple current and fast response--were examined and verified by circuit simulation and experiments.

  • Pulse Coding Controlled Switching Converter that Generates Notch Frequency to Suit Noise Spectrum

    Yifei SUN  Yasunori KOBORI  Anna KUWANA  Haruo KOBAYASHI  

     
    PAPER-Energy in Electronics Communications

      Pubricized:
    2020/05/20
      Vol:
    E103-B No:11
      Page(s):
    1331-1340

    This paper proposes a noise reduction technology for a specific frequency band that uses the pulse coding controlled method to automatically set the notch frequency in DC-DC switching converters of communication equipment. For reducing the power levels at the frequency and its harmonics in the switching converter, we often use a frequency-modulated clock. This paper investigates a technology that prevents modulated clock frequency noise from spreading into protected frequency bands; this proposed noise reduction technology does not distribute the switching noise into some specified frequency bands. The notch in the spectrum of the switching pulses is created by the Pulse Width Coding (PWC) method. In communication devices, the noise in the receiving signal band must be as small as possible. The notch frequency is automatically set to the frequency of the received signal by adjusting the clock frequency using the equation Fn = (P+0.5)Fck. Here Fn is the notch frequency, Fck is the clock frequency, and P is a positive integer that determines the noise spectrum location. Therefore, simply be setting the notch frequency to the received signal frequency can suppress the noise present. We confirm with simulations that the proposed technique is effective for noise reduction and notch generation. Also we implement a method of automatic switching between two receiving channels. The conversion voltage ratio in the pulse width coding method switching converter is analyzed and full automatic notch frequency generation is realized. Experiments on a prototype circuit confirm notch frequency generation.

  • A Study on Loop Gain Measurement Method Using Output Impedance in DC-DC Buck Converter

    Nobukazu TSUKIJI  Yasunori KOBORI  Haruo KOBAYASHI  

     
    PAPER-Energy in Electronics Communications

      Pubricized:
    2018/02/23
      Vol:
    E101-B No:9
      Page(s):
    1940-1948

    We propose a method to derive the loop gain from the open-loop and closed-loop output impedances in a dc-dc buck converter with voltage mode and current mode controls. This enables the loop gain to be measured without injecting a signal into the feedback loop, i.e. without breaking the feedback loop; hence the proposed method can be applied to the control circuits implemented on an IC. Our simulation and experiment show that the loop gain determined by the proposed method closely matches that yielded by the conventional method, which has to break the feedback loop. These results confirm that the proposed method can accurately estimate the phase margin.