The search functionality is under construction.

Author Search Result

[Author] Yi Wen JIAO(3hit)

1-3hit
  • A Frequency Estimation Algorithm for High Precision Monitoring of Significant Space Targets Open Access

    Ze Fu GAO  Wen Ge YANG  Yi Wen JIAO  

     
    LETTER-Communication Theory and Signals

      Pubricized:
    2023/09/26
      Vol:
    E107-A No:7
      Page(s):
    1058-1061

    Space is becoming increasingly congested and contested, which calls for effective means to conduct effective monitoring of high-value space assets, especially in Space Situational Awareness (SSA) missions, while there are imperfections in existing methods and corresponding algorithms. To overcome such a problem, this letter proposes an algorithm for accurate Connected Element Interferometry (CEI) in SSA based on more interpolation information and iterations. Simulation results show that: (i) after iterations, the estimated asymptotic variance of the proposed method can basically achieve uniform convergence, and the ratio of it to ACRB is 1.00235 in δ0 ∈ [-0.5, 0.5], which is closer to 1 than the current best AM algorithms; (ii) In the interval of SNR ∈ [-14dB, 0dB], the estimation error of the proposed algorithm decreases significantly, which is basically comparable to CRLB (maintains at 1.236 times). The research of this letter could play a significant role in effective monitoring and high-precision tracking and measurement with significant space targets during futuristic SSA missions.

  • A High-Performance Antenna Array Signal Processing Method in Deep Space Communication Open Access

    Yi Wen JIAO  Ze Fu GAO  Wen Ge YANG  

     
    LETTER-Communication Theory and Signals

      Pubricized:
    2023/09/25
      Vol:
    E107-A No:7
      Page(s):
    1062-1065

    In future deep space communication missions, VLBI (Very Long Baseline Interferometry) based on antenna array technology remains a critical detection method, which urgently requires the improvement of synthesis performance for antenna array signals. Considering this, focusing on optimizing the traditional antenna grouping method applied in the phase estimation algorithm, this letter proposes a “L/2 to L/2” antenna grouping method based on the maximum correlation signal-to-noise ratio (SNR). Following this idea, a phase difference estimation algorithm named “Couple” is presented. Theoretical analysis and simulation verification illustrate that: when ρ < -10dB, the proposed “Couple” has the highest performance; increasing the number of antennas can significantly improve its synthetic loss performance and robustness. The research of this letter indicates a promising potential in supporting the rising deep space exploration and communication missions.

  • A SOM-CNN Algorithm for NLOS Signal Identification

    Ze Fu GAO  Hai Cheng TAO   Qin Yu ZHU  Yi Wen JIAO  Dong LI  Fei Long MAO  Chao LI  Yi Tong SI  Yu Xin WANG  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2022/08/01
      Vol:
    E106-B No:2
      Page(s):
    117-132

    Aiming at the problem of non-line of sight (NLOS) signal recognition for Ultra Wide Band (UWB) positioning, we utilize the concepts of Neural Network Clustering and Neural Network Pattern Recognition. We propose a classification algorithm based on self-organizing feature mapping (SOM) neural network batch processing, and a recognition algorithm based on convolutional neural network (CNN). By assigning different weights to learning, training and testing parts in the data set of UWB location signals with given known patterns, a strong NLOS signal recognizer is trained to minimize the recognition error rate. Finally, the proposed NLOS signal recognition algorithm is verified using data sets from real scenarios. The test results show that the proposed algorithm can solve the problem of UWB NLOS signal recognition under strong signal interference. The simulation results illustrate that the proposed algorithm is significantly more effective compared with other algorithms.