1-1hit |
Bo LIU Yao-Long ZHU Ying-Hui LI
A head-disk spacing tester that includes the effect of lubricant will be necessary if the slider-disk interaction is to be considered. The interaction and interaction induced spacing variation can be quantitatively characterized by optical method and by replacing the functional disk media with a glass disk covered with a carbon layer and a lubricant layer of the same materials and the same layer thickness as the functional disk media. This paper reports a tester configuration based on that concept. Experimental investigations into the nanometer spaced head-disk interface with such a setup are presented also. Results indicate that the lubricant plays an important role in slider-disk interaction and the vibration of the slider-disk interface. Two types of interface vibration were noticed: contact vibration and bouncing vibration. For the bouncing case, the natural frequency of air-bearing and its fold frequencies will be excited and air-bearing plays more important role in the determination of the slider vibration, comparing with the contact-vibration case.