1-4hit |
Yong-Eun KIM Kyung-Ju CHO Jin-Gyun CHUNG
In this paper, based on the variation of the modified Booth encoding method, an efficient modified Booth multiplier design method for predetermined coefficient groups is proposed. In the case of pulse-shaping filter design used in CDMA, it is shown that by the proposed method, area and power consumption can be reduced up to 44% and 48%, respectively, compared with the conventional designs. Also, it is shown that in the case of 128-point radix-24 FFT, the area and power consumption can be reduced by 18% and 36%, respectively.
In-Gul JANG Kyung-Ju CHO Yong-Eun KIM Jin-Gyun CHUNG
In this paper, to reduce the memory size requirements of IFFT for OFDM-based applications, we propose a new IFFT design technique based on a combined integer mapping of three IFFT input signals: modulated data, pilot and null signals. The proposed method focuses on reducing the size of memory cells in the first two stages of the single-path delay feedback (SDF) IFFT architectures since the first two stages require 75% of the total memory cells. By simulations of 2048-point IFFT design for cognitive radio systems, it is shown that the proposed IFFT design method achieves more than 13% reduction in gate count and 11% reduction in power consumption compared with conventional IFFT design.
Yong-Eun KIM Kyung-Ju CHO Jin-Gyun CHUNG Xinming HUANG
An efficient multiplier design method for predetermined coefficient groups is presented based on the variation of canonic signed digit (CSD) encoding and partial product sharing. By applications to radix-24 FFT structure and the pulse-shaping filter design used in CDMA, it is shown that the proposed method significantly reduces the area, propagation delay and power consumption compared with previous methods.
Yong-Eun KIM Kyung-Ju CHO Jin-Gyun CHUNG Xinming HUANG
This paper presents an error compensation method for fixed-width group canonic signed digit (GCSD) multipliers that receive a W-bit input and generate a W-bit product. To efficiently compensate for the truncation error, the encoded signals from the GCSD multiplier are used for the generation of the error compensation bias. By Synopsys simulations, it is shown that the proposed method leads to up to 84% reduction in power consumption and up to 78% reduction in area compared with the fixed-width modified Booth multipliers.