The search functionality is under construction.

Author Search Result

[Author] Yong-Hoon CHOI(2hit)

1-2hit
  • Coexistence of WiFi and WiMAX Systems Based on Coexistence Zone within WiMAX Frame Structure and Modified Power Saving Mode of WiFi System

    Jongwoo KIM  Suwon PARK  Seung Hyong RHEE  Yong-Hoon CHOI  Ho Young HWANG  Young-uk CHUNG  

     
    LETTER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E94-B No:6
      Page(s):
    1781-1784

    Various co-sited wireless communication systems may share the same frequency band. This causes mutual interference between the wireless communication systems, and degrades the performance of each wireless communication system. In this paper, we analyze the effect of mutual interference between WiFi and WiMAX systems sharing the same frequency band. We propose novel methods based on a proposed coexistence zone within the WiMAX frame structure and a modified power saving mode of the WiFi system to solve the problem. We evaluate the performance of the proposed methods by computer simulation.

  • An Extended Model for TCP Loss Recovery Latency with Random Packet Losses

    Beomjoon KIM  Yong-Hoon CHOI  Jaiyong LEE  

     
    PAPER-Network

      Vol:
    E89-B No:1
      Page(s):
    28-37

    It has been a very important issue to evaluate the performance of transmission control protocol (TCP), and the importance is still growing up because TCP will be deployed more widely in future wireless as well as wireline networks. It is also the reason why there have been a lot of efforts to analyze TCP performance more accurately. Most of these works are focusing on overall TCP end-to-end throughput that is defined as the number of bytes transmitted for a given time period. Even though each TCP's fast recovery strategy should be considered in computation of the exact time period, it has not been considered sufficiently in the existing models. That is, for more detailed performance analysis of a TCP implementation, the fast recovery latency during which lost packets are retransmitted should be considered with its relevant strategy. In this paper, we extend the existing models in order to capture TCP's loss recovery behaviors in detail. On the basis of the model, the loss recovery latency of three TCP implementations can be derived with considering the number of retransmitted packets. In particular, the proposed model differentiates the loss recovery performance of TCP using selective acknowledgement (SACK) option from TCP NewReno. We also verify that the proposed model reflects the precise latency of each TCP's loss recovery by simulations.