1-1hit |
Qing-dao-er-ji REN Yuan LI Shi BAO Yong-chao LIU Xiu-hong CHEN
As the mainstream approach in the field of machine translation, neural machine translation (NMT) has achieved great improvements on many rich-source languages, but performance of NMT for low-resource languages ae not very good yet. This paper uses data enhancement technology to construct Mongolian-Chinese pseudo parallel corpus, so as to improve the translation ability of Mongolian-Chinese translation model. Experiments show that the above methods can improve the translation ability of the translation model. Finally, a translation model trained with large-scale pseudo parallel corpus and integrated with soft context data enhancement technology is obtained, and its BLEU value is 39.3.