The search functionality is under construction.

Author Search Result

[Author] Yoshiharu DOI(5hit)

1-5hit
  • Development and Evaluation of a Smart Antenna Test Bed for Wireless LAN

    Yoshiharu DOI  Seigo NAKAO  Yasuhiro TANAKA  Takeo OHGANE  Yasutaka OGAWA  

     
    PAPER-Antennas and Propagation for Wireless Communications

      Vol:
    E87-C No:9
      Page(s):
    1449-1454

    Research in smart antenna technology has progressed over the past few years and is gradually reaching the phase of practical use. We have developed a smart antenna test bed for wireless local area network (LAN) that is based on the IEEE802.11b. The objective is to improve anti-multipath fading performance and expand communication distance. Using this test bed, we carried out field tests in two environment. One environment is an office in an non line of sight (NLOS), and another environment is an outdoor in a line of sight (LOS). In this paper, we explain the outline of the test bed, the measurement method, and present the results of the field tests. In the office environment, we measured the performance of each set with a different number of antenna elements. The results show that the dead-spots where communication becomes impossible disappear if the number of antenna elements is more than or equal to two. In addition, a greater number of elements indicates better performance. The total average throughput is 1.6 times as efficient when two elements are used, and 1.9 times when four elements are used. Cold spots where the throughput is slower than 1 Mbps are reduced by 80-90%. In the outdoor LOS environment field test, it is shown that by using four-element smart antenna for both transmitter and receiver, the communication distance reached 1km with an average throughput of 4 Mbps. These results prove that the smart antenna drastically improves the performance of a wireless LAN system, i.e. the IEEE802.11b.

  • A Spatial Domain Interference Canceller Using a Multistage Adaptive Array with Precise Timing Estimation

    Toshihiko NISHIMURA  Yasuhiko TANABE  Takeo OHGANE  Yasutaka OGAWA  Yoshiharu DOI  Jun KITAKADO  

     
    PAPER-Adaptive Algorithms and Experiments

      Vol:
    E84-B No:7
      Page(s):
    1735-1742

    In SDMA, a spatial domain interference canceller applying a multistage processing concept to the MMSE multibeam adaptive array has an attractive feature. Weak power signals strongly interfered can be detected in the succeeded stages after removing other strong power signals which are already detected. This idea can be enhanced to the reference timing estimation required in the MMSE algorithm. In this paper, the spatial domain interference canceller introducing multistage timing estimation is proposed and its performance is evaluated by computer simulations. The results show that the timing estimation performance highly improved.

  • Development and Evaluation of the SDMA Test Bed for PHS in the Field

    Yoshiharu DOI  Jun KITAKADO  Tadayoshi ITO  Takeo MIYATA  Seigo NAKAO  Takeo OHGANE  Yasutaka OGAWA  

     
    PAPER

      Vol:
    E86-B No:12
      Page(s):
    3433-3440

    Many carriers are introducing multi-media services to satisfy customer demands for these services. In order to provide such services, carrier must increase their system capacity. It is well known that space division multiple access (SDMA) improves system capacity and is compatible with existing access systems. In order to evaluate the performance of SDMA, we developed an SDMA test bed. The test bed maintains the personal handy phone systems (PHS). The PHS adopts time division multiple access (TDMA). Aiming to compare the performance of SDMA and TDMA using the same analog hardware, the SDMA test bed employs a software-defined radio (SDR) technique. This paper shows the outline and performance of the test bed. The results of laboratory tests indicate that the bit error rate (BER) of the test bed operated in the SDMA mode at under 10-3 when the carrier-tointerference ratio (CIR) was larger than approximately -22 dB. Antenna patterns measured in an anechoic chamber show that the SDMA test bed produces correct antenna patterns when there are three desired signals and one interference signal. The results of the four field tests confirm that the test bed operated while two-multiplex SDMA mode doubled of the traffic and decreased the interference level as compared with the TDMA mode. Furthermore, the test bed operated while threemultiplex SDMA mode improves the traffic about 2.4 to 2.7 times. The SDMA test bed decreased the impact of the adjusted TDMA base station (BS). Therefore, we confirmed that the SDMA improves system capacity without any degradation.

  • Space Domain Multistage Interference Canceller for SDMA

    Toshihiko NISHIMURA  Takeo OHGANE  Yasutaka OGAWA  Yoshiharu DOI  Jun KITAKADO  

     
    PAPER

      Vol:
    E84-B No:3
      Page(s):
    377-382

    It is difficult for an adaptive array to reduce interference signals efficiently from received signals when the interference signals and desired signal are closely located. This is a problem for a spatial division multiple access (SDMA) system using the multibeam adaptive array as a multiuser detector. In this paper, we propose a space domain multistage interference canceller (SD-MIC) for the SDMA system. Its performance is evaluated by computer simulations, assuming Japanese personal handy phone system (PHS) uplink environments. The results show remarkable improvement in high spatial correlation situations.

  • ISI and CCI Canceller with Preselecting Adaptive Array and Cascaded Equalizer in Digital Mobile Radio

    Yoshiharu DOI  Takeo OHGANE  Yoshio KARASAWA  

     
    PAPER-Antennas and Propagation

      Vol:
    E81-B No:3
      Page(s):
    674-682

    An adaptive array has been proposed as a canceller for both inter-symbol interference (ISI) and co-channel interference (CCI). However, it has no path-diversity gain since it selects just one signal correlated to the reference signal. In this paper, a novel interference canceller having sufficient path-diversity gain is proposed. The canceller is characterized by the combined configuration of an adaptive array and an equalizer. In the proposed system, a pre-selecting adaptive array is installed first. By employing a specific training sequence and sampling timing at the receiver during the training period, the perfect correlation between the "desired signal" and "short delayed" is achieved. Therefore, the pre-selecting adaptive array can extract the desired and ISI signals simultaneously, and the cascaded adaptive equalizer can provide the path-diversity gain without degradation by interference. The proposed system achieves a simple configuration and robustness against both ISI and CCI with a sufficient path diversity gain. In computer simulations, average BER characteristics of the proposed system were evaluated in a quasi-static Rayleigh fading channel. The simulation results showed that the system can reduce both long-delayed ISI and CCI efficiently, and that the expected path diversity gain is obtained even with strong CCI. They also showed that the degradation is not so serious when the number of antenna elements is less than that of incoming signals.