The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Yoshinori SHIGETA(2hit)

1-2hit
  • Unreachability Proofs for β Rewriting Systems by Homomorphisms

    Kiyoshi AKAMA  Yoshinori SHIGETA  Eiichi MIYAMOTO  

     
    PAPER-Automata,Languages and Theory of Computing

      Vol:
    E82-D No:2
      Page(s):
    339-347

    Given two terms and their rewriting rules, an unreachability problem proves the non-existence of a reduction sequence from one term to another. This paper formalizes a method for solving unreachability problems by abstraction; i. e. , reducing an original concrete unreachability problem to a simpler abstract unreachability problem to prove the unreachability of the original concrete problem if the abstract unreachability is proved. The class of rewriting systems discussed in this paper is called β rewriting systems. The class of β rewriting systems includes very important systems such as semi-Thue systems and Petri Nets. Abstract rewriting systems are also a subclass of β rewriting systems. A β rewriting system is defined on axiomatically formulated base structures, called β structures, which are used to formalize the concepts of "contexts" and "replacement," which are common to many rewritten objects. Each domain underlying semi-Thue systems, Petri Nets, and other rewriting systems are formalized by a β structure. A concept of homomorphisms from a β structure (a concrete domain) to a β structure (an abstract domain) is introduced. A homomorphism theorem (Theorem1)is established for β rewriting systems, which states that concrete reachability implies abstract reachability. An unreachability theorem (Corollary1) is also proved for β rewriting systems. It is the contraposition of the homomorphism theorem, i. e. , it says that abstract unreachability implies concrete unreachability. The unreachability theorem is used to solve two unreachability problems: a coffee bean puzzle and a checker board puzzle.

  • Common Structure of Semi-Thue Systems, Petri Nets, and Other Rewriting Systems

    Kiyoshi AKAMA  Yoshinori SHIGETA  Eiichi MIYAMOTO  

     
    PAPER-Automata,Languages and Theory of Computing

      Vol:
    E80-D No:12
      Page(s):
    1141-1148

    Many rewriting systems, including those of terms, strings, graphs, and conjunction of atoms, are used throughout computer science and artificial intelligence. While the concepts of "substitutions," "places" in objects and the "replacement" of "subobjects" by other objects seems to be common to all rewriting systems, there does not exist a common foundation for such systems. At the present time, many of the theories are constructed independently, one for each kind of rewritten object. In the conventional approach, abstract rewriting systems are used to discuss common properties of all rewriting systems. However, they are too abstract to capture properties relating to substructures of objects. This paper aims to provide a first step towards a unified formalization of rewriting systems. The major problem in their formulation may be the formalization of the concept of "places". This has been solved here by employment of the concept of contexts rather than by formalization of places. Places determine subobjects from objects, while, conversely, contexts determine objects from subobjects. A class of rewriting systems, called β rewriting systems, is proposed. It is defined on axiomatically formulated base structures, called β structures, which are used to formalize the concepts of "contexts" and "replacement" common to many rewritten objects. The class of β rewriting systems includes very important systems such as semi-Thue systems and Petri Nets. Abstract rewriting systems are also a subclass of β rewriting systems.