The search functionality is under construction.

Author Search Result

[Author] Young-Seok CHOI(6hit)

1-6hit
  • Robust Subband Adaptive Filtering against Impulsive Noise

    Young-Seok CHOI  

     
    LETTER-Speech and Hearing

      Pubricized:
    2015/06/26
      Vol:
    E98-D No:10
      Page(s):
    1879-1883

    In this letter, a new subband adaptive filter (SAF) which is robust against impulsive noise in system identification is presented. To address the vulnerability of adaptive filters based on the L2-norm optimization criterion to impulsive noise, the robust SAF (R-SAF) comes from the L1-norm optimization criterion with a constraint on the energy of the weight update. Minimizing L1-norm of the a posteriori error in each subband with a constraint on minimum disturbance gives rise to robustness against impulsive noise and the capable convergence performance. Simulation results clearly demonstrate that the proposal, R-SAF, outperforms the classical adaptive filtering algorithms when impulsive noise as well as background noise exist.

  • Noise Constrained Data-Reusing Adaptive Algorithms for System Identification

    Young-Seok CHOI  Woo-Jin SONG  

     
    LETTER-Digital Signal Processing

      Vol:
    E95-A No:6
      Page(s):
    1084-1087

    We present a new framework of the data-reusing (DR) adaptive algorithms by incorporating a constraint on noise, referred to as a noise constraint. The motivation behind this work is that the use of the statistical knowledge of the channel noise can contribute toward improving the convergence performance of an adaptive filter in identifying a noisy linear finite impulse response (FIR) channel. By incorporating the noise constraint into the cost function of the DR adaptive algorithms, the noise constrained DR (NC-DR) adaptive algorithms are derived. Experimental results clearly indicate their superior performance over the conventional DR ones.

  • Partial-Update Normalized Sign LMS Algorithm Employing Sparse Updates

    Seong-Eun KIM  Young-Seok CHOI  Jae-Woo LEE  Woo-Jin SONG  

     
    LETTER-Digital Signal Processing

      Vol:
    E96-A No:6
      Page(s):
    1482-1487

    This paper provides a novel normalized sign least-mean square (NSLMS) algorithm which updates only a part of the filter coefficients and simultaneously performs sparse updates with the goal of reducing computational complexity. A combination of the partial-update scheme and the set-membership framework is incorporated into the context of L∞-norm adaptive filtering, thus yielding computational efficiency. For the stabilized convergence, we formulate a robust update recursion by imposing an upper bound of a step size. Furthermore, we analyzed a mean-square stability of the proposed algorithm for white input signals. Experimental results show that the proposed low-complexity NSLMS algorithm has similar convergence performance with greatly reduced computational complexity compared to the partial-update NSLMS, and is comparable to the set-membership partial-update NLMS.

  • A Low-Complexity Complementary Pair Affine Projection Adaptive Filter

    Kwang-Hoon KIM  Young-Seok CHOI  Seong-Eun KIM  Woo-Jin SONG  

     
    LETTER-Digital Signal Processing

      Vol:
    E97-A No:10
      Page(s):
    2074-2078

    We present a low-complexity complementary pair affine projection (CP-AP) adaptive filter which employs the intermittent update of the filter coefficients. To achieve both a fast convergence rate and a small residual error, we use a scheme combining fast and slow AP filters, while significantly reducing the computational complexity. By employing an evolutionary method which automatically determines the update intervals, the update frequencies of the two constituent filters are significantly decreased. Experimental results show that the proposed CP-AP adaptive filter has an advantage over conventional adaptive filters with a parallel structure in that it has a similar convergence performance with a substantial reduction in the total number of updates.

  • Adaptive Subscale Entropy Based Quantification of EEG

    Young-Seok CHOI  

     
    LETTER-Biological Engineering

      Vol:
    E97-D No:5
      Page(s):
    1398-1401

    This letter presents a new entropy measure for electroencephalograms (EEGs), which reflects the underlying dynamics of EEG over multiple time scales. The motivation behind this study is that neurological signals such as EEG possess distinct dynamics over different spectral modes. To deal with the nonlinear and nonstationary nature of EEG, the recently developed empirical mode decomposition (EMD) is incorporated, allowing an EEG to be decomposed into its inherent spectral components, referred to as intrinsic mode functions (IMFs). By calculating Shannon entropy of IMFs in a time-dependent manner and summing them over adaptive multiple scales, the result is an adaptive subscale entropy measure of EEG. Simulation and experimental results show that the proposed entropy properly reveals the dynamical changes over multiple scales.

  • Sparsity Regularized Affine Projection Adaptive Filtering for System Identification

    Young-Seok CHOI  

     
    LETTER-Fundamentals of Information Systems

      Vol:
    E97-D No:4
      Page(s):
    964-967

    A new type of the affine projection (AP) algorithms which incorporates the sparsity condition of a system is presented. To exploit the sparsity of the system, a weighted l1-norm regularization is imposed on the cost function of the AP algorithm. Minimizing the cost function with a subgradient calculus and choosing two distinct weightings for l1-norm, two stochastic gradient based sparsity regularized AP (SR-AP) algorithms are developed. Experimental results show that the SR-AP algorithms outperform the typical AP counterparts for identifying sparse systems.