1-1hit |
Yu KASHIHARA Takashi MATSUBARA
The diffusion model has achieved success in generating and editing high-quality images because of its ability to produce fine details. Its superior generation ability has the potential to facilitate more detailed segmentation. This study presents a novel approach to segmentation tasks using an inverse heat dissipation model, a kind of diffusion-based models. The proposed method involves generating a mask that gradually shrinks to fit the shape of the desired segmentation region. We comprehensively evaluated the proposed method using multiple datasets under varying conditions. The results show that the proposed method outperforms existing methods and provides a more detailed segmentation.