The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Yuan SUN(3hit)

1-3hit
  • Weighted Generalized Hesitant Fuzzy Sets and Its Application in Ensemble Learning Open Access

    Haijun ZHOU  Weixiang LI  Ming CHENG  Yuan SUN  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2024/01/22
      Vol:
    E107-D No:5
      Page(s):
    694-703

    Traditional intuitionistic fuzzy sets and hesitant fuzzy sets will lose some information while representing vague information, to avoid this problem, this paper constructs weighted generalized hesitant fuzzy sets by remaining multiple intuitionistic fuzzy values and giving them corresponding weights. For weighted generalized hesitant fuzzy elements in weighted generalized hesitant fuzzy sets, the paper defines some basic operations and proves their operation properties. On this basis, the paper gives the comparison rules of weighted generalized hesitant fuzzy elements and presents two kinds of aggregation operators. As for weighted generalized hesitant fuzzy preference relation, this paper proposes its definition and computing method of its corresponding consistency index. Furthermore, the paper designs an ensemble learning algorithm based on weighted generalized hesitant fuzzy sets, carries out experiments on 6 datasets in UCI database and compares with various classification algorithms. The experiments show that the ensemble learning algorithm based on weighted generalized hesitant fuzzy sets has better performance in all indicators.

  • Improve the Prediction of Student Performance with Hint's Assistance Based on an Efficient Non-Negative Factorization

    Ke XU  Rujun LIU  Yuan SUN  Keju ZOU  Yan HUANG  Xinfang ZHANG  

     
    PAPER

      Pubricized:
    2017/01/17
      Vol:
    E100-D No:4
      Page(s):
    768-775

    In tutoring systems, students are more likely to utilize hints to assist their decisions about difficult or confusing problems. In the meanwhile, students with weaker knowledge mastery tend to choose more hints than others with stronger knowledge mastery. Hints are important assistances to help students deal with questions. Students can learn from hints and enhance their knowledge about questions. In this paper we firstly use hints alone to build a model named Hints-Model to predict student performance. In addition, matrix factorization (MF) has been prevalent in educational fields to predict student performance, which is derived from their success in collaborative filtering (CF) for recommender systems (RS). While there is another factorization method named non-negative matrix factorization (NMF) which has been developed over one decade, and has additional non-negative constrains on the factorization matrices. Considering the sparseness of the original matrix and the efficiency, we can utilize an element-based matrix factorization called regularized single-element-based NMF (RSNMF). We compared the results of different factorization methods to their combination with Hints-Model. From the experiment results on two datasets, we can find the combination of RSNMF with Hints-Model has achieved significant improvement and obtains the best result. We have also compared the Hints-Model with the pioneer approach performance factor analysis (PFA), and the outcomes show that the former method exceeds the later one.

  • Cost Aware Offloading Selection and Resource Allocation for Cloud Based Multi-Robot Systems

    Yuan SUN  Xing-she ZHOU  Gang YANG  

     
    LETTER-Software System

      Pubricized:
    2017/08/28
      Vol:
    E100-D No:12
      Page(s):
    3022-3026

    In this letter, we investigate the computation offloading problem in cloud based multi-robot systems, in which user weights, communication interference and cloud resource limitation are jointly considered. To minimize the system cost, two offloading selection and resource allocation algorithms are proposed. Numerical results show that the proposed algorithms both can greatly reduce the overall system cost, and the greedy selection based algorithm even achieves near-optimal performance.