1-2hit |
Yuanfa JI Sisi SONG Xiyan SUN Ning GUO Youming LI
In order to improve the frequency band utilization and avoid mutual interference between signals, the BD3 satellite signals adopt Binary Offset Carrier (BOC) modulation. On one hand, BOC modulation has a narrow main peak width and strong anti-interference ability; on the other hand, the phenomenon of false acquisition locking caused by the multi-peak characteristic of BOC modulation itself needs to be resolved. In this context, this paper proposes a new BOC(n,n) unambiguous acquisition algorithm based on segmentation reconstruction. The algorithm is based on splitting the local BOC signal into four parts in each subcarrier period. The branch signal and the received signal are correlated with the received signal to generate four branch correlation signals. After a series of combined reconstructions, the final signal detection function completely eliminates secondary peaks. A simulation shows that the algorithm can completely eliminate the sub-peak interference for the BOC signals modulated by subcarriers with different phase. The characteristics of narrow correlation peak are retained. Experiments show that the proposed algorithm has superior performance in detection probability and peak-to-average ratio.
Ce LIANG Xiyan SUN Yuanfa JI Qinghua LIU Guisheng LIAO
The composite binary offset carrier (CBOC) modulated signal contains multi-peaks in its auto-correlation function, which brings ambiguity to the signal acquisition process of a GNSS receiver. Currently, most traditional ambiguity-removing schemes for CBOC signal acquisition approximate CBOC signal as a BOC signal, which may incur performance degradation. Based on Galileo E1 CBOC signal, this paper proposes a novel adaptive ambiguity-removing acquisition scheme which doesn't adopt the approximation used in traditional schemes. According to the energy ratio of each sub-code of CBOC signal, the proposed scheme can self-adjust its local reference code to achieve unambiguous and precise signal synchronization. Monte Carlo simulation is conducted in this paper to analyze the performance of the proposed scheme and three traditional schemes. Simulation results show that the proposed scheme has higher detection probability and less mean acquisition time than the other three schemes, which verify the superiority of the proposed scheme.