The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Yuanjiang LI(2hit)

1-2hit
  • Semi-Supervised Learning via Geodesic Weighted Sparse Representation

    Jianqiao WANG  Yuehua LI  Jianfei CHEN  Yuanjiang LI  

     
    LETTER-Pattern Recognition

      Vol:
    E97-D No:6
      Page(s):
    1673-1676

    The label estimation technique provides a new way to design semi-supervised learning algorithms. If the labels of the unlabeled data can be estimated correctly, the semi-supervised methods can be replaced by the corresponding supervised versions. In this paper, we propose a novel semi-supervised learning algorithm, called Geodesic Weighted Sparse Representation (GWSR), to estimate the labels of the unlabeled data. First, the geodesic distance and geodesic weight are calculated. The geodesic weight is utilized to reconstruct the labeled samples. The Euclidean distance between the reconstructed labeled sample and the unlabeled sample equals the geodesic distance between the original labeled sample and the unlabeled sample. Then, the unlabeled samples are sparsely reconstructed and the sparse reconstruction weight is obtained by minimizing the L1-norm. Finally, the sparse reconstruction weight is utilized to estimate the labels of the unlabeled samples. Experiments on synthetic data and USPS hand-written digit database demonstrate the effectiveness of our method.

  • A Modified AdaBoost Algorithm with New Discrimination Features for High-Resolution SAR Targets Recognition

    Kun CHEN  Yuehua LI  Xingjian XU  Yuanjiang LI  

     
    LETTER-Pattern Recognition

      Pubricized:
    2015/07/21
      Vol:
    E98-D No:10
      Page(s):
    1871-1874

    In this paper, we first propose ten new discrimination features of SAR images in the moving and stationary target acquisition and recognition (MSTAR) database. The Ada_MCBoost algorithm is then proposed to classify multiclass SAR targets. In the new algorithm, we introduce a novel large-margin loss function to design a multiclass classifier directly instead of decomposing the multiclass problem into a set of binary ones through the error-correcting output codes (ECOC) method. Finally, experiments show that the new features are helpful for SAR targets discrimination; the new algorithm had better recognition performance than three other contrast methods.