The search functionality is under construction.

Author Search Result

[Author] Yuji HOSHIZAWA(2hit)

1-2hit
  • Automated Malware Analysis System and Its Sandbox for Revealing Malware's Internal and External Activities

    Daisuke INOUE  Katsunari YOSHIOKA  Masashi ETO  Yuji HOSHIZAWA  Koji NAKAO  

     
    PAPER-Malware Detection

      Vol:
    E92-D No:5
      Page(s):
    945-954

    Malware has been recognized as one of the major security threats in the Internet . Previous researches have mainly focused on malware's internal activity in a system. However, it is crucial that the malware analysis extracts a malware's external activity toward the network to correlate with a security incident. We propose a novel way to analyze malware: focus closely on the malware's external (i.e., network) activity. A malware sample is executed on a sandbox that consists of a real machine as victim and a virtual Internet environment. Since this sandbox environment is totally isolated from the real Internet, the execution of the sample causes no further unwanted propagation. The sandbox is configurable so as to extract specific activity of malware, such as scan behaviors. We implement a fully automated malware analysis system with the sandbox, which enables us to carry out the large-scale malware analysis. We present concrete analysis results that are gained by using the proposed system.

  • Malware Sandbox Analysis for Secure Observation of Vulnerability Exploitation

    Katsunari YOSHIOKA  Daisuke INOUE  Masashi ETO  Yuji HOSHIZAWA  Hiroki NOGAWA  Koji NAKAO  

     
    PAPER-Malware Detection

      Vol:
    E92-D No:5
      Page(s):
    955-966

    Exploiting vulnerabilities of remote systems is one of the fundamental behaviors of malware that determines their potential hazards. Understanding what kind of propagation tactics each malware uses is essential in incident response because such information directly links with countermeasures such as writing a signature for IDS. Although recently malware sandbox analysis has been studied intensively, little work is done on securely observing the vulnerability exploitation by malware. In this paper, we propose a novel sandbox analysis method for securely observing malware's vulnerability exploitation in a totally isolated environment. In our sandbox, we prepare two victim hosts. We first execute the sample malware on one of these hosts and then let it attack the other host which is running multiple vulnerable services. As a simple realization of the proposed method, we have implemented a sandbox using Nepenthes, a low-interaction honeypot, as the second victim. Because Nepenthes can emulate a variety of vulnerable services, we can efficiently observe the propagation of sample malware. In the experiments, among 382 samples whose scan capabilities are confirmed, 381 samples successfully started exploiting vulnerabilities of the second victim. This indicates the certain level of feasibility of the proposed method.