The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Yujing GUO(1hit)

1-1hit
  • Novel Confidence Feature Extraction Algorithm Based on Latent Topic Similarity

    Wei CHEN  Gang LIU  Jun GUO  Shinichiro OMACHI  Masako OMACHI  Yujing GUO  

     
    PAPER-Speech and Hearing

      Vol:
    E93-D No:8
      Page(s):
    2243-2251

    In speech recognition, confidence annotation adopts a single confidence feature or a combination of different features for classification. These confidence features are always extracted from decoding information. However, it is proved that about 30% of knowledge of human speech understanding is mainly derived from high-level information. Thus, how to extract a high-level confidence feature statistically independent of decoding information is worth researching in speech recognition. In this paper, a novel confidence feature extraction algorithm based on latent topic similarity is proposed. Each word topic distribution and context topic distribution in one recognition result is firstly obtained using the latent Dirichlet allocation (LDA) topic model, and then, the proposed word confidence feature is extracted by determining the similarities between these two topic distributions. The experiments show that the proposed feature increases the number of information sources of confidence features with a good information complementary effect and can effectively improve the performance of confidence annotation combined with confidence features from decoding information.