1-1hit |
This paper proposes a method for human pose estimation in still images. The proposed method achieves occlusion-aware appearance modeling. Appearance modeling with less accurate appearance data is problematic because it adversely affects the entire training process. The proposed method evaluates the effectiveness of mitigating the influence of occluded body parts in training sample images. In order to improve occlusion evaluation by a discriminatively-trained model, occlusion images are synthesized and employed with non-occlusion images for discriminative modeling. The score of this discriminative model is used for weighting each sample in the training process. Experimental results demonstrate that our approach improves the performance of human pose estimation in contrast to base models.