The search functionality is under construction.

Author Search Result

[Author] Yukui PEI(3hit)

1-3hit
  • A Time-Frequency Interleave Structure of Single Carrier FDE over Deep Fading Wireless Channels

    Liang ZHU  Yukui PEI  Ning GE  Jianhua LU  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E93-B No:10
      Page(s):
    2800-2803

    We propose a time-frequency interleave (TFI) structure of single carrier (SC) frequency domain equalization (FDE) to combat spectral nulls of wireless channels. Permuted copies of block data are transmitted in the TFI-FDE, providing the same diversity order as maximal-ratio receiver combining. The spectral nulls are compensated by uncorrelated spectral components of the same channel. It shows 4 dB diversity gains at BER of 10-2 over an indoor channel. The TFI-FDE is computationally-efficient in combination with fast Fourier transform. This TFI-FDE fits SC systems with single antenna. It needs no channel state information at the transmitter.

  • Weighted Hard Combination for Cooperative Spectrum Sensing under Noise Uncertainty

    Ruyuan ZHANG  Yafeng ZHAN  Yukui PEI  Jianhua LU  

     
    PAPER

      Vol:
    E97-B No:2
      Page(s):
    275-282

    Cooperative spectrum sensing is an effective approach that utilizes spatial diversity gain to improve detection performance. Most studies assume that the background noise is exactly known. However, this is not realistic because of noise uncertainty which will significantly degrade the performance. A novel weighted hard combination algorithm with two thresholds is proposed by dividing the whole range of the local test statistic into three regions called the presence, uncertainty and absence regions, instead of the conventional two regions. The final decision is made by weighted combination at the common receiver. The key innovation is the full utilization of the information contained in the uncertainty region. It is worth pointing out that the weight coefficient and the local target false alarm probability, which determines the two thresholds, are also optimized to minimize the total error rate. Numerical results show this algorithm can significantly improve the detection performance, and is more robust to noise uncertainty than the existing algorithms. Furthermore, the performance of this algorithm is not sensitive to the local target false alarm probability at low SNR. Under sufficiently high SNR condition, this algorithm reduces to the improved one-out-of-N rule. As noise uncertainty is unavoidable, this algorithm is highly practical.

  • Co-channel Interference Mitigation via Joint Frequency and Space Domains Base Station Cooperation for Multi-Cell OFDMA Systems

    Yizhen JIA  Xiaoming TAO  Youzheng WANG  Yukui PEI  Jianhua LU  

     
    PAPER

      Vol:
    E93-B No:12
      Page(s):
    3469-3479

    Base Station (BS) cooperation has been considered as a promising technology to mitigate co-channel interference (CCI), yielding great capacity improvement in cellular systems. In this paper, by combining frequency domain cooperation and space domain cooperation together, we design a new CCI mitigation scheme to maximize the total utility for a multi-cell OFDMA network. The scheme formulates the CCI mitigation problem as a mixture integer programming problem, which involves a joint user-set-oriented subcarrier assignment and power allocation. A computationally feasible algorithm based on Lagrange dual decomposition is derived to evaluate the optimal value of the problem. Moreover, a low-complexity suboptimal algorithm is also presented. Simulation results show that our scheme outperforms the counterparts incorporating BS cooperation in a single domain considerably, and the proposed low-complexity algorithm achieves near optimal performance.