The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Yundong LI(4hit)

1-4hit
  • Detection and Tracking Method for Dynamic Barcodes Based on a Siamese Network

    Menglong WU  Cuizhu QIN  Hongxia DONG  Wenkai LIU  Xiaodong NIE  Xichang CAI  Yundong LI  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2022/01/13
      Vol:
    E105-B No:7
      Page(s):
    866-875

    In many screen to camera communication (S2C) systems, the barcode preprocessing method is a significant prerequisite because barcodes may be deformed due to various environmental factors. However, previous studies have focused on barcode detection under static conditions; to date, few studies have been carried out on dynamic conditions (for example, the barcode video stream or the transmitter and receiver are moving). Therefore, we present a detection and tracking method for dynamic barcodes based on a Siamese network. The backbone of the CNN in the Siamese network is improved by SE-ResNet. The detection accuracy achieved 89.5%, which stands out from other classical detection networks. The EAO reaches 0.384, which is better than previous tracking methods. It is also superior to other methods in terms of accuracy and robustness. The SE-ResNet in this paper improved the EAO by 1.3% compared with ResNet in SiamMask. Also, our method is not only applicable to static barcodes but also allows real-time tracking and segmentation of barcodes captured in dynamic situations.

  • A Two-Stage Crack Detection Method for Concrete Bridges Using Convolutional Neural Networks

    Yundong LI  Weigang ZHAO  Xueyan ZHANG  Qichen ZHOU  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2018/09/05
      Vol:
    E101-D No:12
      Page(s):
    3249-3252

    Crack detection is a vital task to maintain a bridge's health and safety condition. Traditional computer-vision based methods easily suffer from disturbance of noise and clutters for a real bridge inspection. To address this limitation, we propose a two-stage crack detection approach based on Convolutional Neural Networks (CNN) in this letter. A predictor of small receptive field is exploited in the first detection stage, while another predictor of large receptive field is used to refine the detection results in the second stage. Benefiting from data fusion of confidence maps produced by both predictors, our method can predict the probability belongs to cracked areas of each pixel accurately. Experimental results show that the proposed method is superior to an up-to-date method on real concrete surface images.

  • Unsupervised Building Damage Identification Using Post-Event Optical Imagery and Variational Autoencoder

    Daming LIN  Jie WANG  Yundong LI  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2021/07/20
      Vol:
    E104-D No:10
      Page(s):
    1770-1774

    Rapid building damage identification plays a vital role in rescue operations when disasters strike, especially when rescue resources are limited. In the past years, supervised machine learning has made considerable progress in building damage identification. However, the usage of supervised machine learning remains challenging due to the following facts: 1) the massive samples from the current damage imagery are difficult to be labeled and thus cannot satisfy the training requirement of deep learning, and 2) the similarity between partially damaged and undamaged buildings is high, hindering accurate classification. Leveraging the abundant samples of auxiliary domains, domain adaptation aims to transfer a classifier trained by historical damage imagery to the current task. However, traditional domain adaptation approaches do not fully consider the category-specific information during feature adaptation, which might cause negative transfer. To address this issue, we propose a novel domain adaptation framework that individually aligns each category of the target domain to that of the source domain. Our method combines the variational autoencoder (VAE) and the Gaussian mixture model (GMM). First, the GMM is established to characterize the distribution of the source domain. Then, the VAE is constructed to extract the feature of the target domain. Finally, the Kullback-Leibler (KL) divergence is minimized to force the feature of the target domain to observe the GMM of the source domain. Two damage detection tasks using post-earthquake and post-hurricane imageries are utilized to verify the effectiveness of our method. Experiments show that the proposed method obtains improvements of 4.4% and 9.5%, respectively, compared with the conventional method.

  • Combining Fisher Criterion and Deep Learning for Patterned Fabric Defect Inspection

    Yundong LI  Jiyue ZHANG  Yubing LIN  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2016/08/08
      Vol:
    E99-D No:11
      Page(s):
    2840-2842

    In this letter, we propose a novel discriminative representation for patterned fabric defect inspection when only limited negative samples are available. Fisher criterion is introduced into the loss function of deep learning, which can guide the learning direction of deep networks and make the extracted features more discriminating. A deep neural network constructed from the encoder part of trained autoencoders is utilized to classify each pixel in the images into defective or defectless categories, using as context a patch centered on the pixel. Sequentially the confidence map is processed by median filtering and binary thresholding, and then the defect areas are located. Experimental results demonstrate that our method achieves state-of-the-art performance on the benchmark fabric images.