1-4hit |
Menglong WU Cuizhu QIN Hongxia DONG Wenkai LIU Xiaodong NIE Xichang CAI Yundong LI
In many screen to camera communication (S2C) systems, the barcode preprocessing method is a significant prerequisite because barcodes may be deformed due to various environmental factors. However, previous studies have focused on barcode detection under static conditions; to date, few studies have been carried out on dynamic conditions (for example, the barcode video stream or the transmitter and receiver are moving). Therefore, we present a detection and tracking method for dynamic barcodes based on a Siamese network. The backbone of the CNN in the Siamese network is improved by SE-ResNet. The detection accuracy achieved 89.5%, which stands out from other classical detection networks. The EAO reaches 0.384, which is better than previous tracking methods. It is also superior to other methods in terms of accuracy and robustness. The SE-ResNet in this paper improved the EAO by 1.3% compared with ResNet in SiamMask. Also, our method is not only applicable to static barcodes but also allows real-time tracking and segmentation of barcodes captured in dynamic situations.
Yundong LI Weigang ZHAO Xueyan ZHANG Qichen ZHOU
Crack detection is a vital task to maintain a bridge's health and safety condition. Traditional computer-vision based methods easily suffer from disturbance of noise and clutters for a real bridge inspection. To address this limitation, we propose a two-stage crack detection approach based on Convolutional Neural Networks (CNN) in this letter. A predictor of small receptive field is exploited in the first detection stage, while another predictor of large receptive field is used to refine the detection results in the second stage. Benefiting from data fusion of confidence maps produced by both predictors, our method can predict the probability belongs to cracked areas of each pixel accurately. Experimental results show that the proposed method is superior to an up-to-date method on real concrete surface images.
Daming LIN Jie WANG Yundong LI
Rapid building damage identification plays a vital role in rescue operations when disasters strike, especially when rescue resources are limited. In the past years, supervised machine learning has made considerable progress in building damage identification. However, the usage of supervised machine learning remains challenging due to the following facts: 1) the massive samples from the current damage imagery are difficult to be labeled and thus cannot satisfy the training requirement of deep learning, and 2) the similarity between partially damaged and undamaged buildings is high, hindering accurate classification. Leveraging the abundant samples of auxiliary domains, domain adaptation aims to transfer a classifier trained by historical damage imagery to the current task. However, traditional domain adaptation approaches do not fully consider the category-specific information during feature adaptation, which might cause negative transfer. To address this issue, we propose a novel domain adaptation framework that individually aligns each category of the target domain to that of the source domain. Our method combines the variational autoencoder (VAE) and the Gaussian mixture model (GMM). First, the GMM is established to characterize the distribution of the source domain. Then, the VAE is constructed to extract the feature of the target domain. Finally, the Kullback-Leibler (KL) divergence is minimized to force the feature of the target domain to observe the GMM of the source domain. Two damage detection tasks using post-earthquake and post-hurricane imageries are utilized to verify the effectiveness of our method. Experiments show that the proposed method obtains improvements of 4.4% and 9.5%, respectively, compared with the conventional method.
Yundong LI Jiyue ZHANG Yubing LIN
In this letter, we propose a novel discriminative representation for patterned fabric defect inspection when only limited negative samples are available. Fisher criterion is introduced into the loss function of deep learning, which can guide the learning direction of deep networks and make the extracted features more discriminating. A deep neural network constructed from the encoder part of trained autoencoders is utilized to classify each pixel in the images into defective or defectless categories, using as context a patch centered on the pixel. Sequentially the confidence map is processed by median filtering and binary thresholding, and then the defect areas are located. Experimental results demonstrate that our method achieves state-of-the-art performance on the benchmark fabric images.